User, Access & Identity
Management: Securing the
Cloud Era

A comprehensive guide to modern identity and access management

frameworks, technologies, and best practices for securing organizations

in the cloud era.

H Facilitators: Abdallah lbrahim Nyero, Hajarah Ali Namuwaya, Dr. Ali Mwase,

and Charles Kikwanga

Chapter 1: Foundations of Identity and Access
Management (IAM)

Understanding the critical building blocks that form the foundation of modern identity and access management systems.

ldentity and Access Management (IAM)

—— ———0—

|IAM Framework Access Control Security Foundation

A comprehensive system to Ensures only authorized users can Serves as the cornerstone of
manage digital identities and access theright resources at the modern security architecture,
control access to resources across right time and for the right reasons especially in cloud environments

your organization

ldentity and Access Management has evolved from a simple directory service to become the critical security control layer for

organizations of all sizes.

Key IAM Components

-

~
Authentication

The process of verifying a user's
identity through various factors:
- Passwords (something you

know)
- Security tokens (something you

have)
- Biometrics (something you are)

/

-

Authorization

Determining what resources an

authenticated user can access:

« Permission sets
« Accesspolicies

« Conditional rules

|dentity

Digital representation of entities
that need access:
- Users (employees, partners,

customers)
« Services and applications

« DevicesandloT endpoints

Why |IAM Matters Today

Dissolving Perimeters Data Protection
Cloud adoption has Prevents unauthorized
eliminated traditional access to sensitive
network boundaries, making information across
identity the new security distributed environments
perimeter

Compliance

Supports regulatory requirements like GDPR, HIPAA, SOX, and

industry-specific frameworks

>

VERIFICATION GATE

I\

2

I

Cloud IAM Features:

Azure AD, AWS IAM, and Google IAM each provide:
* Role assignment and delegation

 MFA and password policy enforcement

« Access logging and monitoring (CloudTrail, Azure

Monitor, Cloud Audit Logs)

Chapter 2: Core Access
Control Models: RBAC,
ABAC, PBAC

Understanding the fundamental access control methodologies that form

the backbone of modern |IAM systems.

Role-Based Access Control (RBAC)

RBAC simplifies access management by assigning permissions to

roles rather than individual users.

Key Advantages:

« Simplifies permission management at scale

- Enforces least privilege through well-defined roles
« Reduces administrative overhead

« Supports compliance through role standardization

- Enables easy onboarding/offboarding

.
g

.
iy ¥ ¥

RBAC Practical Example

~
Security Manager Role Temporary Contractor Role
Permissions: Permissions:

« View security audit logs across all systems « Limited to specific project resources

- Configure security alert thresholds - Time-bound access (expires after 90 days)

« Access security incident reports « Noaccessto production data

- Manage security monitoring tools - Restricted network access points
Configuration: aws iam create-role --role-name Configuration: aws iam create-role --role-name
SecurityManager --assume-role-policy-document Contractor --max-session-duration 28800
file://trust-policy.json D

= =

(PASSWORD ‘
|

BIOMETRIC SCAN

Chapter 3: Authentication
Enhancements: MFA & SSO

Strengthening authentication with modern approaches that balance

('SECURITY SURSIoR y

security and user experience.

Multi-Factor Authentication (MFA)

MFA requires two or more verification factors before granting access:

-

.

Something You Know

« Password
« PIN

« Security questions

\

/

Something You Have

Mobile device

Hardware token

Smart card

-

-

.

Something You Are

« Fingerprint
- Facial recognition

« Voice pattern

WELCOMETO
"CONNECT”

99.9%

Reduction in account compromise risk with MFA enabled

(Microsoft)

MFA in Practice: AWS Example

AWS MFA RecommendatlonS: # AWS CLI example to enable MFA requirementaws iam put-user-policy \ --

user-name admin-user \ --policy-name RequireMFA \ --policy-document '{

Mandatory MFA for root accounts

"Version": "2012-10-17", "Statement": [{ "Effect": "Deny",

"NotAction": ["iam:CreateVirtualMFADevice", "iam:EnableMFADevice"],

MFA for all privileged operations
"Resource": "*", "Condition": { "BoolIfExists": {

"aws:MultiFactorAuthPresent": "false" } } }] }'

MFA for all JAM users with console access

Supported MFA Types:

Virtual MFA (authenticator apps)
Hardware tokens (YubiKey, etc.)
SMS text messages (less secure)

Single Sign-0On (SSO)

Key Benefits of SSO:
Login Login Register Support

« One set of credentials for multiple applications

« Reduces password fatigue and reset requests

- Improves security through centralized authentication
« Streamlines user onboarding and offboarding

« Enhances visibility into access patterns

70% reduction in password-related help desk tickets after SSO

implementation (Forrester Research)

Unlock seamless access

Securely manage your applications with our intuitive login system

Practical SSO Configuration
Example

Integrating Azure AD with Salesforce using SAML

Azure AD Configuration: Salesforce Configuration:

—

1. Add Salesforce from the gallery Set up Single Sign-On Settings

2. Configure SAML endpoints and 2. Upload IdP certificate from Azure
certificates
3. Map user attributes (email, 3. Configure SAML endpoints
%Li{;’:%ﬁ‘,ﬁ;‘;:‘;) name, role) 4. Setup user provisioning
[@ 4. Assignusersto the Salesforce (optional)
application

Result: Users authenticate once to Azure AD and gain seamless access to

Salesforce without additional login prompts.

WV

'/ M b)

Chapter 4: IAM in Cloud Platforms: AWS, Azure,
Google Cloud

Exploring the native identity and access management capabilities of the major cloud service providers.

AWS IAM Overview

Core Components:

Users: Individual identities for people or services

Groups: Collections of users with shared permissions

(0O E
Roles: Identities assumed by users, services, or external entities AWS [AM 0
Policies: JSON documents that define permissions - O_ o :
Q Users Groups
Key Features: \ = ,
, e .
C | O Rolicy O Policy
- Centralized control of AWS account (D management () e

« Sharedaccess to AWS resources
« Granular permissions

« |dentity federation with external providers

AWS Best Practices

))
Use AWS IAM ldentity Center Enforce Least Privilege Use IAM Access Analyzer
Centralize access management across Grant only the permissions required to ldentify resources shared with external
multiple AWS accounts and business perform a task entities and validate policies
applications
Example of scoped S3 access # Create an Access Analyzeraws

Enable IAM Identity Center via policy{ "Version": "2012-10-17", accessanalyzer create-analyzer \

AWS CLIaws sso-admin create- "Statement": [{ "Effect": --analyzer-name AccountAnalyzer \

instance "Allow", "Action": --type ACCOUNT

["s3:GetObject",

"s3:ListBucket"], "Resource":
["arn:aws:s3:::my-bucket",
"arn:aws:s3:::my-bucket/*"]

H1}

Azure Active Directory (Azure AD)

Core Capabilities:

M Azure Azure Docs Pricing Support

« Identity management for Microsoft cloud

« Hybrid identity with on-premises AD

« B2BandB2C identity solutions
« Conditional Access policies

Privileged Identity Management (PIM)

Key Security Features:

. Risk-based authentication

« |dentity Protection

« Just-in-time access

. Access Reviews

Manage your identity Secure access for everyone

oundattiion anpens-acesion appisindns
and wounss and devitrest azteclummseecicatent
oledivoraingt aicoureaness estices..

Active Active Condanacci and

; Coptiict Tiing Coostiont Cophicerdon
Directory pacess toe vensut o o

Google Cloud IAM

Key Concepts:

Members: Users, service accounts, groups, domains
Roles: Collections of permissions
Permissions: Determine allowed operations on resources

Policy: Binds members to roles for specific resources

Role Types: - A

Basic: Owner, Editor, Viewer O Google Cloud IAM

Predefined: Service-specificroles

Custom: User-defined permission sets

= | =
~'H

Cross-Cloud IAM Challenges

Common Challenges:

Q |dentity Fragmentation

Users have separate identities in each cloud platform, leading to credential

sprawl and inconsistent access controls

O Policy Consistency

Maintaining uniform security policies across diverse cloud environments

with different IAM models

Q Visibility Gaps

Limited centralized view of permissions and access patterns across

multiple cloud providers

Solutions often involve federation services or third-party Cloud IAM platforms that

act as a central identity hub.

Chapter 5: Security Policies \A
& Governance in |AM *

Establishing effective governance frameworks to ensure consistent 1]

security across your organization.

/\

Defining IAM Security Policies

Essential Policy Components:

Authentication standards: Password complexity, MFA

requirements
Authorization frameworks: RBAC implementation details

Access review cadence: Quarterly, bi-annual reviews

Compliance mapping: How IAM supports regulatory requirements

Emergency access: Break-glass procedures

Monitoring requirements: Logging and alerting

Policies should be living documents that evolve with organizational

needs and the threat landscape.

LETS PRACTICE!
*Create users & groups (RBAC basics)
*Apply least-privilege with NTFS permissions
*Enforce local password/lockout policies

*Turn on auditing and verify events

Lab 0 — Setup

Create a working folder

New-Item —-Path "C:\IAMLab" -ItemType Directory -Force | Out-Null

Lab 1 — RBAC: users, groups, and least-privilege
1A) Create groups (roles)

New-LocalGroup -Name "AppAdmins" -Description
ErrorAction SilentlyContinue
New-LocalGroup -Name "AppUsers" -Description

ErrorAction SilentlyContinue

1B) Create users and assign to roles

Securely prompt for passwords

Spwl = Read-Host "Password for user studentA"
Spw2 = Read-Host "Password for user studentB"

Create users

"Admins for AppData" -

"Users for AppData"

-AsSecureString
-AsSecureString

New-LocalUser -Name "studentA" -FullName "Student A" -Password Spwl -
PasswordNeverExpires:$false -AccountNeverExpires:Strue -ErrorAction SilentlyContinue
New-LocalUser -Name "studentB" -FullName "Student B" -Password Spw2 -
PasswordNeverExpires:$false -AccountNeverExpires:Strue -ErrorAction SilentlyContinue

Add to groups (roles)

Add-LocalGroupMember -Group "AppAdmins" -Member "studentA" -ErrorAction

SilentlyContinue

Add-LocalGroupMember -Group "AppUsers" -Member "studentB" -ErrorAction

SilentlyContinue

Delete student B from appusers and add there student Y

Minimal RBAC demo (create user, group, folder, set rights)
IAM-Demo.psl (run as Admin)

1) Folder + role (group)
New-Item C:\IAMDEMO -ItemType Directory —-Force | Out-Null
New-LocalGroup AppUsers -ErrorAction SilentlyContinue | Out-Null

2) User in that role

Spw = Read-Host "Set a password for demoUser" -AsSecureString
New-LocalUser demoUser -Password S$pw -FullName "Demo User" -
ErrorAction SilentlyContinue | Out-Null

Add-LocalGroupMember AppUsers demoUser -ErrorAction
SilentlyContinue

3) Simple, clear permissions (stop inheritance; give rights)
icacls C:\IAMDEMO /inheritance:d > $null

icacls C:\IAMDEMO /grant:r "$Senv:USERNAME: (F)" > Snull # you =
Full Control

icacls C:\IAMDEMO /grant:r "AppUsers: (M)" > Snull # role
= Modify

4) Show result
icacls C:\IAMDEMO

Write-Host " 'nl. Setup done. Test with the commands below." o
Lab 2 — Local “security policies”: password & lockout

On standalone Windows, lets set local policy via net accounts.
View current policy
net accounts

Enforce stronger rules (example values)

net accounts /minpwlen:12 /maxpwage:60 /minpwage:1 /uniquepw:5
net accounts /lockoutthreshold:5 /lockoutwindow:30
/lockoutduration:30

Re-check
net accounts

Clean-Up Script
Write-Host " ./ Cleaning up IAM Demo..." -ForegroundColor Cyan

1. Remove demo user from any groups

"demoUser" | ForEach-Object {

Try { Remove-LocalGroupMember -Group "AppUsers" -Member $ -ErrorAction
SilentlyContinue } Catch {}

Try { Remove-LocalGroupMember -Group "Administrators" -Member $ -ErrorAction

SilentlyContinue } Catch {}
}

2. Delete demo user and group
Try { Remove-LocalUser -Name "demoUser" -ErrorAction SilentlyContinue } Catch {}
Try { Remove-LocalGroup -Name "AppUsers" -ErrorAction SilentlyContinue } Catch {}

3. Delete IAMDEMO folder
Try { Remove-Item -Path "C:\IAMDEMO" -Recurse -Force -ErrorAction SilentlyContinue }
Catch {}

4. Confirm cleanup

Write-Host "'nfd IAM demo has been fully cleared. All users, groups, and folders
removed." -ForegroundColor Gree

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

