
User, Access & Identity
Management: Securing the
Cloud Era
A comprehensive guide to modern identity and access management

frameworks, technologies, and best practices for securing organizations

in the cloud era.

Facilitators: Abdallah Ibrahim Nyero, Hajarah Ali Namuwaya, Dr. Ali Mwase,

and Charles Kikwanga

Chapter 1: Foundations of Identity and Access
Management (IAM)
Understanding the critical building blocks that form the foundation of modern identity and access management systems.

1

IAM Framework

A comprehensive system to

manage digital identities and

control access to resources across

your organization

2

Access Control

Ensures only authorized users can

access the right resources at the

right time and for the right reasons

3

Security Foundation

Serves as the cornerstone of

modern security architecture,

especially in cloud environments

Identity and Access Management has evolved from a simple directory service to become the critical security control layer for

organizations of all sizes.

Identity and Access Management (IAM)

Key IAM Components

Authentication

The process of verifying a user's

identity through various factors:

• Passwords (something you

know)
• Security tokens (something you

have)
• Biometrics (something you are)

Authorization

Determining what resources an

authenticated user can access:

• Permission sets

• Access policies

• Conditional rules

Identity

Digital representation of entities

that need access:

• Users (employees, partners,

customers)
• Services and applications

• Devices and IoT endpoints

Why IAM Matters Today

Dissolving Perimeters

Cloud adoption has

eliminated traditional

network boundaries, making

identity the new security

perimeter

Data Protection

Prevents unauthorized

access to sensitive

information across

distributed environments

Compliance

Supports regulatory requirements like GDPR, HIPAA, SOX, and

industry-specific frameworks

Cloud IAM Features:

Azure AD, AWS IAM, and Google IAM each provide:

• Role assignment and delegation

• MFA and password policy enforcement

• Access logging and monitoring (CloudTrail, Azure

Monitor, Cloud Audit Logs)

Chapter 2: Core Access
Control Models: RBAC,
ABAC, PBAC
Understanding the fundamental access control methodologies that form

the backbone of modern IAM systems.

Role-Based Access Control (RBAC)

RBAC simplifies access management by assigning permissions to

roles rather than individual users.

Key Advantages:

• Simplifies permission management at scale

• Enforces least privilege through well-defined roles

• Reduces administrative overhead

• Supports compliance through role standardization

• Enables easy onboarding/offboarding

RBAC Practical Example

Security Manager Role

Permissions:

• View security audit logs across all systems

• Configure security alert thresholds

• Access security incident reports

• Manage security monitoring tools

Configuration: aws iam create-role --role-name

SecurityManager --assume-role-policy-document

file://trust-policy.json

Temporary Contractor Role

Permissions:

• Limited to specific project resources

• Time-bound access (expires after 90 days)

• No access to production data

• Restricted network access points

Configuration: aws iam create-role --role-name

Contractor --max-session-duration 28800

Chapter 3: Authentication
Enhancements: MFA & SSO
Strengthening authentication with modern approaches that balance

security and user experience.

Multi-Factor Authentication (MFA)

MFA requires two or more verification factors before granting access:

Something You Know

• Password

• PIN

• Security questions

Something You Have

• Mobile device

• Hardware token

• Smart card

Something You Are

• Fingerprint

• Facial recognition

• Voice pattern

99.9%

Reduction in account compromise risk with MFA enabled

(Microsoft)

MFA in Practice: AWS Example

AWS MFA Recommendations:

• Mandatory MFA for root accounts

• MFA for all IAM users with console access

• MFA for all privileged operations

Supported MFA Types:

• Virtual MFA (authenticator apps)
• Hardware tokens (YubiKey, etc.)
• SMS text messages (less secure)

AWS CLI example to enable MFA requirementaws iam put-user-policy \ --

user-name admin-user \ --policy-name RequireMFA \ --policy-document '{

"Version": "2012-10-17", "Statement": [{ "Effect": "Deny",

"NotAction": ["iam:CreateVirtualMFADevice", "iam:EnableMFADevice"],

"Resource": "*", "Condition": { "BoolIfExists": {

"aws:MultiFactorAuthPresent": "false" } } }] }'

Single Sign-On (SSO)

Key Benefits of SSO:

• One set of credentials for multiple applications

• Reduces password fatigue and reset requests

• Improves security through centralized authentication

• Streamlines user onboarding and offboarding

• Enhances visibility into access patterns

70% reduction in password-related help desk tickets after SSO

implementation (Forrester Research)

Practical SSO Configuration
Example
Integrating Azure AD with Salesforce using SAML

Azure AD Configuration:

1. Add Salesforce from the gallery

2. Configure SAML endpoints and

certificates
3. Map user attributes (email,

name, role)
4. Assign users to the Salesforce

application

Salesforce Configuration:

1. Set up Single Sign-On Settings

2. Upload IdP certificate from Azure

3. Configure SAML endpoints

4. Set up user provisioning

(optional)

Result: Users authenticate once to Azure AD and gain seamless access to

Salesforce without additional login prompts.

Chapter 4: IAM in Cloud Platforms: AWS, Azure,
Google Cloud
Exploring the native identity and access management capabilities of the major cloud service providers.

AWS IAM Overview

Core Components:

Users: Individual identities for people or services

Groups: Collections of users with shared permissions

Roles: Identities assumed by users, services, or external entities

Policies: JSON documents that define permissions

Key Features:

• Centralized control of AWS account

• Shared access to AWS resources

• Granular permissions

• Identity federation with external providers

AWS Best Practices

Use AWS IAM Identity Center

Centralize access management across

multiple AWS accounts and business

applications

Enable IAM Identity Center via

AWS CLIaws sso-admin create-

instance

Enforce Least Privilege

Grant only the permissions required to

perform a task

Example of scoped S3 access

policy{ "Version": "2012-10-17",

"Statement": [{ "Effect":

"Allow", "Action":

["s3:GetObject",

"s3:ListBucket"], "Resource":

["arn:aws:s3:::my-bucket",

"arn:aws:s3:::my-bucket/*"]

}]}

Use IAM Access Analyzer

Identify resources shared with external

entities and validate policies

Create an Access Analyzeraws

accessanalyzer create-analyzer \

--analyzer-name AccountAnalyzer \

--type ACCOUNT

Azure Active Directory (Azure AD)

Core Capabilities:

• Identity management for Microsoft cloud

• Hybrid identity with on-premises AD

• B2B and B2C identity solutions

• Conditional Access policies

• Privileged Identity Management (PIM)

Key Security Features:

• Risk-based authentication

• Identity Protection

• Just-in-time access

• Access Reviews

Microsoft has rebranded Azure AD as "Microsoft Entra ID" as part of their

security portfolio expansion.

Google Cloud IAM

Key Concepts:

Members: Users, service accounts, groups, domains

Roles: Collections of permissions

Permissions: Determine allowed operations on resources

Policy: Binds members to roles for specific resources

Role Types:

Basic: Owner, Editor, Viewer

Predefined: Service-specific roles

Custom: User-defined permission sets

Create custom role with gcloudgcloud iam roles create customRole \ --

project=my-project \ --title="Custom Role" \ --description="Limited S3

access" \ --permissions=storage.objects.get,storage.objects.list

Cross-Cloud IAM Challenges
Common Challenges:

Identity Fragmentation

Users have separate identities in each cloud platform, leading to credential

sprawl and inconsistent access controls

Policy Consistency

Maintaining uniform security policies across diverse cloud environments

with different IAM models

Visibility Gaps

Limited centralized view of permissions and access patterns across

multiple cloud providers

Solutions often involve federation services or third-party Cloud IAM platforms that

act as a central identity hub.

Chapter 5: Security Policies
& Governance in IAM
Establishing effective governance frameworks to ensure consistent

security across your organization.

Defining IAM Security Policies

Essential Policy Components:

Authentication standards: Password complexity, MFA

requirements
Authorization frameworks: RBAC implementation details

Access review cadence: Quarterly, bi-annual reviews

Compliance mapping: How IAM supports regulatory requirements

Emergency access: Break-glass procedures

Monitoring requirements: Logging and alerting

Policies should be living documents that evolve with organizational

needs and the threat landscape.

LETS PRACTICE!

•Create users & groups (RBAC basics)

•Apply least-privilege with NTFS permissions

•Enforce local password/lockout policies

•Turn on auditing and verify events

Lab 0 — Setup
Create a working folder

New-Item -Path "C:\IAMLab" -ItemType Directory -Force | Out-Null

Lab 1 — RBAC: users, groups, and least-privilege

1A) Create groups (roles)
New-LocalGroup -Name "AppAdmins" -Description "Admins for AppData" -

ErrorAction SilentlyContinue

New-LocalGroup -Name "AppUsers" -Description "Users for AppData" -

ErrorAction SilentlyContinue

1B) Create users and assign to roles
Securely prompt for passwords

$pw1 = Read-Host "Password for user studentA" -AsSecureString

$pw2 = Read-Host "Password for user studentB" -AsSecureString

Create users

New-LocalUser -Name "studentA" -FullName "Student A" -Password $pw1 -

PasswordNeverExpires:$false -AccountNeverExpires:$true -ErrorAction SilentlyContinue

New-LocalUser -Name "studentB" -FullName "Student B" -Password $pw2 -

PasswordNeverExpires:$false -AccountNeverExpires:$true -ErrorAction SilentlyContinue

Add to groups (roles)

Add-LocalGroupMember -Group "AppAdmins" -Member "studentA" -ErrorAction

SilentlyContinue

Add-LocalGroupMember -Group "AppUsers" -Member "studentB" -ErrorAction

SilentlyContinue

Delete student B from appusers and add there student Y

Lab 2 — Local “security policies”: password & lockout
On standalone Windows,lets set local policy via net accounts.
View current policy

net accounts

Enforce stronger rules (example values)

net accounts /minpwlen:12 /maxpwage:60 /minpwage:1 /uniquepw:5

net accounts /lockoutthreshold:5 /lockoutwindow:30

/lockoutduration:30

Re-check

net accounts

Minimal RBAC demo (create user, group, folder, set rights)
IAM-Demo.ps1 (run as Admin)

1) Folder + role (group)

New-Item C:\IAMDEMO -ItemType Directory -Force | Out-Null

New-LocalGroup AppUsers -ErrorAction SilentlyContinue | Out-Null

2) User in that role

$pw = Read-Host "Set a password for demoUser" -AsSecureString

New-LocalUser demoUser -Password $pw -FullName "Demo User" -

ErrorAction SilentlyContinue | Out-Null

Add-LocalGroupMember AppUsers demoUser -ErrorAction

SilentlyContinue

3) Simple, clear permissions (stop inheritance; give rights)

icacls C:\IAMDEMO /inheritance:d > $null

icacls C:\IAMDEMO /grant:r "$env:USERNAME:(F)" > $null # you =

Full Control

icacls C:\IAMDEMO /grant:r "AppUsers:(M)" > $null # role

= Modify

4) Show result

icacls C:\IAMDEMO

Write-Host "`n Setup done. Test with the commands below."

Clean-Up Script
Write-Host " Cleaning up IAM Demo..." -ForegroundColor Cyan

1. Remove demo user from any groups

"demoUser" | ForEach-Object {

Try { Remove-LocalGroupMember -Group "AppUsers" -Member $_ -ErrorAction

SilentlyContinue } Catch {}

Try { Remove-LocalGroupMember -Group "Administrators" -Member $_ -ErrorAction

SilentlyContinue } Catch {}

}

2. Delete demo user and group

Try { Remove-LocalUser -Name "demoUser" -ErrorAction SilentlyContinue } Catch {}

Try { Remove-LocalGroup -Name "AppUsers" -ErrorAction SilentlyContinue } Catch {}

3. Delete IAMDEMO folder

Try { Remove-Item -Path "C:\IAMDEMO" -Recurse -Force -ErrorAction SilentlyContinue }

Catch {}

4. Confirm cleanup

Write-Host "`n IAM demo has been fully cleared. All users, groups, and folders

removed." -ForegroundColor Gree

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

