
Automation & Scripting:
PowerShell, Bash, Ansible &
Infrastructure as Code
This comprehensive guide will introduce you to essential automation tools and

scripting languages that power modern IT infrastructure. From basic scripting with

PowerShell and Bash to configuration management with Ansible and Infrastructure

as Code principles, you'll learn how to transform manual processes into efficient,

scalable automation.

Using code and tools to perform repetitive cloud tasks automatically.

Purpose: Improves efficiency, reduces human error, and ensures

consistency.

Why Automate ?

Consistency: Standardize resource creation and management.

Speed: Rapidly deploy and manage infrastructure.

Scalability: Handle large environments with minimal effort.

Cost Savings: Reduce manual labor and downtime.

Integration: Connect automation with CI/CD pipelines.

Example: Turning off VMs at night instead of clicking manually

What Is Automation?

Common Areas of Automation
•IT & System Administration: creating users, managing updates,

restarting services.

•Business Operations: sending reports, processing invoices, data

entry.

•Cloud & DevOps: deploying servers, configuring networks,

managing backups.

•Education: grading submissions, generating student reports.

•Home Automation: smart lights, alarms, thermostats, and

security cameras.

Tools Used

•Windows: PowerShell, Task Scheduler

•Linux: Bash, cron jobs

•Cloud: Azure CLI, AWS scripts, Ansible

•General: Python, Node.js, Docker, Jenkins

Why Automation & Scripting Matter Today

In today's fast-paced IT landscape, automation isn't just convenient—it's critical.

Organizations are managing increasingly complex infrastructure across on-

premises and cloud environments while facing:

Resource Constraints

IT teams are expected to

accomplish more with the same

or fewer resources

Speed Requirements

Business needs demand faster

deployment and configuration

Scaling Challenges

Managing hundreds or thousands of systems manually is impossible

Automation and scripting provide the foundation for modern DevOps practices, enabling teams to break free from tedious manual work and

focus on innovation.

Manual Infrastructure Deployment: The Old
Reality 1Manual Server Setup

Technicians physically install hardware, configure BIOS, and install OS from installation media

2 Software Installation

Administrators manually install applications, patches, and dependencies one-by-one

3Configuration

Settings applied manually through GUI interfaces or basic scripts, often following lengthy

documentation
4 Testing & Validation

Manual checks to verify proper configuration, often missing subtle issues

The High Cost of Manual Deployment

A typical enterprise server deployment could take 2-5 days of work hours, with a 15-30% chance of human error requiring troubleshooting and rework. Organizations with hundreds of servers faced

enormous operational overhead.

Automation Transforms IT
Operations

Before Automation

• Server provisioning takes days

• Configuration drift between

environments
• Unpredictable deployment

outcomes
• Limited ability to scale operations

• High operational costs for routine

tasks

After Automation

• Server provisioning in minutes

• Consistent environments

guaranteed
• Predictable, repeatable

deployments
• Effortless scaling to thousands of

systems
• Low operational overhead for

routine tasks

"Infrastructure automation isn't just about efficiency—it's about creating a

reliable foundation that enables innovation while reducing the operational

burden on IT teams."

Scripting means writing small programs (called scripts)

that tell a computer exactly what to do — step by step.

It’s the foundation of automation because the script is what

the computer runs automatically.

A script is a short list of commands or instructions written in

a special language (like PowerShell, Python, or Bash) that a

computer follows to perform a task.

Scripting

Popular Scripting Languages

System Language

Windows PowerShell, Batch

Linux / macOS Bash, Shell Script

Cross-platform Python, Node.js

Cloud & DevOps YAML (Ansible), Terraform

Category Example

File Management Create, rename, copy, delete files or folders

Data Processing Read a file, calculate values, generate reports

System Admin Add users, restart services, monitor resources

Networking Check connections, send data between computers

Software Tasks Install apps, run updates, clean cache

What You Can Do with Scripts

Automating tasks on your Windows computer using simple scripts.

Create folders automatically:
PowerShell script

for ($i=1; $i -le 5; $i++) {

New-Item -Path

"C:\Users\$env:USERNAME\Documents\Folder$i" -

ItemType Directory

}

This creates 5 folders named Folder1 to Folder5.

Windows Automation (PowerShell & Batch Scripts)

for ($i=1; $i -le 5; $i++) {

Remove-Item "C:\Users\$env:USERNAME\Documents\Folder$i" -

Force

}

Delete old files automatically:

$action = New-ScheduledTaskAction -Execute "shutdown.exe"

-Argument "/r /f /t 0"

$trigger = New-ScheduledTaskTrigger -Daily -At 17:00

$settings = New-ScheduledTaskSettingsSet -

AllowStartIfOnBatteries -DontStopIfGoingOnBatteries -

StartWhenAvailable -WakeToRun

Register-ScheduledTask -TaskName "DailyRestart5PM" `

-Action $action -Trigger $trigger -Settings $settings `

-RunLevel Highest -User "SYSTEM"

Create a scheduled task called “DailyRestart5PM” that restarts your computer

every day at 5 PM.

To Delete the Task Later
schtasks /Delete /TN "DailyRestart5PM" /F

Test It Immediately
schtasks /Run /TN "DailyRestart5PM"

Create a script that will display a Warning popup at 4:55 PM (shows for up to 5 minutes)

=== Find files >= 1 GB across all drives and export a CSV ===

$ThresholdBytes = 1GB

$timestamp = Get-Date -Format 'yyyyMMdd_HHmm'

$outCsv = Join-Path $env:USERPROFILE "Desktop\LargeFiles_$timestamp.csv"

Optional: exclude noisy/system folders (edit as you like)

$excludePattern = '\\Windows\\|\\Program Files(

\(x86\))?\\|\\ProgramData\\|\\AppData\\|\\Recovery\\|\\$Recycle\.Bin\\|\\System Volume

Information\\'

$results = foreach ($drive in (Get-PSDrive -PSProvider FileSystem)) {

Write-Host "Scanning $($drive.Root) ..."

Get-ChildItem -Path $drive.Root -Recurse -Force -File -ErrorAction SilentlyContinue |

Where-Object {

$_.Length -ge $ThresholdBytes -and ($_.FullName -notmatch $excludePattern)

} |

Select-Object @{

Name='SizeGB'; Expression={ [math]::Round($_.Length/1GB, 2) }

}, Length, LastWriteTime, FullName, DirectoryName, Name

}

$results |

Sort-Object SizeGB -Descending |

Tee-Object -Variable big |

Format-Table SizeGB, LastWriteTime, FullName -AutoSize

$big | Export-Csv -NoTypeInformation -Path $outCsv

Write-Host "`nSaved CSV to: $outCsv"

PowerShell script that scans all drives and lists every file ≥ 1 GB, prints a table,

and saves a CSV on your Desktop.
Run PowerShell as Administrator for best results (to avoid access-denied folders).

Tool Description Difficulty

Azure CLI
Type commands in a

terminal

Azure PowerShell
Windows-style

commands

Bicep / ARM

Templates

Define resources in

files

Azure Automation
Run scripts in the

cloud

Key Azure Tools:

• Command-line tool for managing Azure resources.

• Cross-platform: Works on Windows, macOS, and Linux.

• Best for quick automation scripts.

Step 1: Open the Azure Cloud Shell (built into Azure Portal).

Step 2: Try these commands

az login

az group create --name myGroup --location eastus

az vm create --resource-group myGroup --name

testVM --image UbuntuLTS

Activity: Create and delete your first resource group.

Getting Started with Azure CLI

• Azure Automation is a Cloud-based automation platform that lets you run scripts

automatically.

• Runs PowerShell and Python runbooks.

• You can schedule them (like alarms).

Capabilities:

• Automate VM management.

• Schedule tasks.

• Update management.

• Configuration tracking.

Example:

Runbook to stop a VM:

Stop-AzVM -Name "testVM" -ResourceGroupName "myGroup" –Force

Activity: Create a runbook that shuts down your VM daily.

Azure Automation (No Coding Needed)

Runbook types:

• Graphical (drag-and-drop)

• PowerShell

• Python

Bash: The Ubiquitous Unix Shell

Bash (Bourne Again SHell) is the default shell on most Linux distributions

and macOS. Its ubiquity makes it an essential skill for anyone working in IT.

Key Bash Features

Text Stream Processing: Powerful text manipulation with tools like grep,

sed, and awk
Pipeline Chaining: Connect commands with pipes (|) to create powerful

processing workflows
Job Control: Manage background and foreground processes

Shell Expansions: Filename, variable, command, and arithmetic expansion

#!/bin/bash# Bash Example# Monitor disk space and alert if

over 90%# Get filesystems over 90% usagecritical_fs=$(df -

h | grep -v "Filesystem" | awk '{print $5 " " $6}' |

grep "^9[0-9]%" || true)# Send alert if any filesystems

are criticalif [! -z "$critical_fs"]; then echo

"CRITICAL: Disk space alert!" echo "The following

filesystems are over 90%:" echo "$critical_fs" # Would

normally send email or notification hereelse echo "All

filesystems have adequate space."fi

PowerShell vs Bash: Strengths & Weaknesses

PowerShell Strengths

• Superior object handling and

structured data processing
• Deep integration with Windows

systems and services
• Consistent parameter handling

with robust help system
• Strong typing and error handling

PowerShell Limitations

• More verbose syntax than Bash

• Slower startup time compared to

Bash
• Less mature on Linux/macOS

platforms
• Steeper learning curve for

beginners

Bash Strengths

• Extremely lightweight and fast

• Universal availability on Unix-like

systems
• Rich ecosystem of text

processing tools
• Concise syntax for common

operations

Bash Limitations

• Limited structured data handling

• Inconsistent parameter handling

across commands
• Weaker error handling capabilities

• Limited debugging facilities

Choosing the Right Tool

Select PowerShell for Windows administration, complex data manipulation, and environments where object handling is valuable. Choose Bash for Unix/Linux environments, text

processing tasks, and situations where script portability and performance are critical.

Benefit Description

Consistency
Prevents “it works on my machine” issues — everyone

gets the same setup.

Speed
You can deploy or rebuild infrastructure in minutes

instead of hours.

Version Control You can track changes and roll back just like code.

Scalability
Easy to create multiple environments (dev, test,

production).

Automation Reduces human error and repetitive manual work.

• Infrastructure as Code means managing and provisioning IT infrastructure (like

servers, networks, and databases) using code, instead of clicking around in a dashboard.

• You write code to build your infrastructure automatically — just like writing a program

that creates your computers, servers, and connections for you.

Why IaC Is Important

What Is Infrastructure as Code (IaC)?

•Declarative , You describe what you want (the desired end state).

Example: “I need one server with Ubuntu in region eastus.”

Tools like Terraform, CloudFormation, Bicep use this.

•Imperative ,You describe how to get there step by step.

Example: “Create a VM, then install Ubuntu, then configure settings.”

Tools like Ansible or Bash scripts can use this approach.

Core Concepts of IaC

Tool Description

Terraform Cloud-agnostic tool — works with AWS, Azure, GCP.

AWS CloudFormation For Amazon Web Services infrastructure.

Azure Bicep / ARM Templates For defining Azure infrastructure as code.

Ansible / Chef / Puppet Configuration management tools — great for software setup.

Pulumi Lets you use real programming languages (Python, TypeScript) for IaC.

Common IaC Tools

Tasks

You’ll create a PowerShell script that:

•Automatically sets up a mini “infrastructure” on your PC (folders, logs, text files).

•It’s repeatable and versionable — the same script gives the same setup every time

(that’s what IaC is about!).

✓ Step 1: Create the Script

Open Notepad, paste this in, and save it as
setup_environment.ps1 (on your Desktop).

Then run:
.\setup_environment.ps1

To verify:
Get-ExecutionPolicy -List

Infrastructure as Code (IaC) to be done locally with PowerShell.

Lets create sample files and subfolders inside each of the

environment folders (Logs, Data, Config)

•Save this as populate_environment.ps1

•Run it in PowerShell:
.\populate_environment.ps1

You can write new PowerShell scripts that run inside this environment, such as:

A. Backup important files
Copy-Item "C:\Users\$env:USERNAME\Documents*.docx"

"C:\MyLocalEnvironment\Data" -Recurse

Automatically copies your documents into the Data folder.

B. Use PowerShell to List Files

Run this command:
Get-ChildItem "C:\MyLocalEnvironment\Data" -Recurse | Where-

Object { $_.Extension -eq ".docx" } | Select-Object FullName

This will print out a list of all .docx files that were copied

Automate Daily or Repetitive Tasks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

