Automation & Scripting:
PowerShell, Bash, Ansible &
Infrastructure as Code

This comprehensive guide will introduce you to essential automation tools and

scripting languages that power modern IT infrastructure. From basic scripting with

PowerShell and Bash to configuration management with Ansible and Infrastructure

as Code principles, you'll learn how to transform manual processes into efficient,

scalable automation.

What Is Automation?
Using code and tools to perform repetitive cloud tasks automatically.

Purpose: Improves efficiency, reduces human error, and ensures
consistency.

Why Automate ?
Consistency: Standardize resource creation and management.
Speed: Rapidly deploy and manage infrastructure.
Scalability: Handle large environments with minimal effort.
Cost Savings: Reduce manual labor and downtime.
Integration: Connect automation with CI/CD pipelines.

Example: Turning off VMs at night instead of clicking manually

Common Areas of Automation

IT & System Administration: creating users, managing updates,
restarting services.

‘Business Operations: sending reports, processing invoices, data
entry.

Cloud & DevOps: deploying servers, configuring networks,
managing backups.

*Education: grading submissions, generating student reports.
‘Home Automation: smart lights, alarms, thermostats, and
security cameras.

Tools Used

‘Windows: PowerShell, Task Scheduler
Linux: Bash, cron jobs

*Cloud: Azure CLI, AWS scripts, Ansible
*General: Python, Node.js, Docker, Jenkins

Why Automation & Scripting Matter Today

In today's fast-paced IT landscape, automation isn't just convenient—it's critical.

Organizations are managing increasingly complex infrastructure across on-

premises and cloud environments while facing:

Resource Constraints Speed Requirements
IT teams are expected to Business needs demand faster
accomplish more with the same deployment and configuration

or fewer resources

Scaling Challenges

Managing hundreds or thousands of systems manually is impossible

Automation and scripting provide the foundation for modern DevOps practices, enabling teams to break free from tedious manual work and

focus on innovation.

| W IEIEE
| -) —

Manual Infrastructure Deployment: The Old
Rea“ty Manual Server Setup 1

Technicians physically install hardware, configure BIOS, and install OS from installation media

2 Software Installation

Administrators manually install applications, patches, and dependencies one-by-one

Configuration 3

Settings applied manually through GUI interfaces or basic scripts, often following lengthy

documentation

4 Testing & Validation

Manual checks to verify proper configuration, often missing subtle issues

® The High Cost of Manual Deployment

A typical enterprise server deployment could take 2-5 days of work hours, with a 15-30% chance of human error requiring troubleshooting and rework. Organizations with hundreds of servers faced

enormous operational overhead.

Automation Transforms IT

Operations

« Server provisioning takes days
« Configuration drift between

environments
« Unpredictable deployment

outcomes

« Limited ability to scale operations
- High operational costs for routine

tasks

Server provisioning in minutes
Consistent environments

guaranteed
Predictable, repeatable

deployments
Effortless scaling to thousands of

systems
Low operational overhead for

routine tasks

“Infrastructure automation isn't just about efficiency—it's about creating a

reliable foundation that enables innovation while reducing the operational

burdenon T teams.”

rManual

Automated

.
sc/?

 m—
s

—<

Scripting

Scripting means writing small programs (called scripts)
that tell a computer exactly what to do — step by step.

It's the foundation of automation because the script is what
the computer runs automatically.

A script is a short list of commands or instructions written in
a special language (like PowerShell, Python, or Bash) that a
computer follows to perform a task.

Popular Scripting Languages

System Language

Windows PowerShell, Batch

Linux / macOS Bash, Shell Script
Cross-platform Python, Node.js

Cloud & DevOps YAML (Ansible), Terraform

What You Can Do with Scripts

Category Example

m: File Management Create, rename, copy, delete files or folders

9 Data Processing Read a file, calculate values, generate reports
System Admin Add users, restart services, monitor resources

&> Networking Check connections, send data between computers
& Software Tasks Install apps, run updates, clean cache

Windows Automation (PowerShell & Batch Scripts)

Automating tasks on your Windows computer using simple scripts.

Create folders automatically:
PowerShell script

for ($i=1; $i -le 5; S$i++)

New—-Item —-Path
"C:\Users\Senv:USERNAME\Documents\FolderSi" -
ITtemType Directory

J

This creates 5 folders named Folderl to Folderb.

Delete old files automatically:

for ($i=1; $i -le 5; $i++) {
Remove-ltem "C:\Users\$env:USERNAME\Documents\Folder$i" -
Force

J

Create a scheduled task called “DailyRestartS5PM” that restarts your computer
every day at 5 PM.

Saction = New-ScheduledTaskAction -Execute "shutdown.exe"
-Argument "/r /f /t O"

Strigger = New-ScheduledTaskTrigger -Daily -At 17:00
Ssettings = New-ScheduledTaskSettingsSet -
AllowStartIfOnBatteries -DontStopIlfGoingOnBatteries -
StartWhenAvailable -WakeToRun

Reglister-ScheduledTask -TaskName "DailyRestart5PM"
—-Action Saction -Trigger Strigger -Settings $settings
-RunLevel Highest -User "SYSTEM"

Test It Immediately
schtasks /Run /TN "DailyRestart5pPM"

To Delete the Task Later
schtasks /Delete /TN "DailyRestart5°PM" /F

Create a script that will display a Warning popup at 4:55 PM (shows for up to 5 minutes)

PowerShell script that scans all drives and lists every file 2 1 GB, prints a table,
and saves a CSV on your Desktop.

Run PowerShell as Administrator for best results (to avoid access-denied folders).

=== Find files >= 1 GB across all drives and export a CSV ===
SThresholdBytes = 1GB

Stimestamp = Get-Date -Format 'yyyyMMdd HHmm'

soutCsv = Join-Path $Senv:USERPROFILE "Desktop\LargeFiles S$timestamp.csv"

Optional: exclude noisy/system folders (edit as you like)

SexcludePattern = '\\Windows\\|\\Program Files (

\ (x86\)) ?2\\ | \\ProgramData\\ | \\AppData\\ | \\Recovery\\ |\\SRecycle\.Bin\\|\\System Volume
Information\\'

Sresults = foreach ($drive in (Get-PSDrive -PSProvider FileSystem)) {
Write-Host "Scanning $(Sdrive.Root) "
Get-ChildItem -Path S$drive.Root -Recurse -Force -File -ErrorAction SilentlyContinue |
Where-Object {
$.Length -ge $ThresholdBytes -and ($.FullName -notmatch SexcludePattern)
b
Select-Object @{
Name='SizeGB'; Expression={ [math]::Round($.Length/1GB, 2) }
}, Length, LastWriteTime, FullName, DirectoryName, Name

Sresults |
Sort-Object SizeGB -Descending |
Tee-Object -Variable big |
Format-Table SizeGB, LastWriteTime, FullName -AutoSize

Sbig | Export-Csv -NoTypeInformation -Path $outCsv
Write-Host " 'nSaved CSV to: $outCsv"

Key Azure Tools:

Difficulty

Type commands in a

Azure CLI terminal e
Azure PowerShell A *
commands
Bicep / ARM Define resources in A 4
Templates files e
: Run scripts in the A 4
Azure Automation &

cloud

Getting Started with Azure CLI

 Command-line tool for managing Azure resources.
* Cross-platform: Works on Windows, macOS, and Linux.
* Best for quick automation scripts.

Step 1: Open the Azure Cloud Shell (built into Azure Portal).
Step 2: Try these commands *

az logilin
az group create —--name myGroup —--location eastus

az vmm create —--resource-group myGroup -—--name
testVM —--image UbuntulTS

Activity: Create and delete your first resource group.

Azure Automation (No Coding Needed)

Azure Automation is a Cloud-based automation platform that lets you run scripts
automatically.

Runs PowerShell and Python runbooks.

You can schedule them (like alarms).

Capabilities:

* Automate VM management. Runbook types:

* Schedule tasks. * Graphical (drag-and-drop)

* Update management. * PowerShell

* Configuration tracking. * Python

Example:

Runbook to stop a VM:

Stop—-AzVM -Name "testVM" —-ResourceGroupName "myGroup" —-Force

Activity: Create a runbook that shuts down your VM daily.

Bash: The Ubiquitous Unix Shell

Bash (Bourne Again SHell) is the default shell on most Linux distributions
#!/bin/bash# Bash Example# Monitor disk space and alert if

and macQOS. Its ubiquity makes it an essential skill for anyone working in IT.
over 90%# Get filesystems over 90% usagecritical fs=$(df -

Key Bash Features h | grep -v "Filesystem" | awk '{print $5 " " $6}"' |
Text Stream Processing: Powerful text manipulation with tools like grep, ey “ERIDONET)| EE)E el SharE A7 eng eSS
ced. and awk are criticalif [! -z "$critical_fs"]; then echo
Pipeline Chaining: Connect commands with pipes (1) to create powerful "CRITICAL: Disk space alert!" echo "The following

processing workflows filesystems are over 90%:" echo "$critical_fs" # Would

Job Control: Manage background and foreground processes normally send email or notification hereelse echo "All

Shell Expansions: Filename, variable, command, and arithmetic expansion filesystems have adequate space."fi

PowerShell vs Bash: Strengths & Weaknesses

4 N 4
PowerShell Strengths Bash Strengths
« Superior object handlingand + Extremely lightweight and fast
structured data processing « Universal availability on Unix-like
+ Deepintegration with Windows systems
systems and services * Richecosystem of text
« Consistent parameter handling processing tools
with robust help system « Concise syntax for common
« Strongtyping and error handling operations
N 2 \

Choosing the Right Tool

Select PowerShell for Windows administration, complex data manipulation, and environments where object handling is valuable. Choose

PowerShell Limitations

More verbose syntax than Bash
Slower startup time compared to

Bash
Less mature on Linux/macOS

platforms
Steeper learning curve for

beginners

processing tasks, and situations where script portability and performance are critical.

Bash Limitations

Limited structured data handling
Inconsistent parameter handling

across commands
Weaker error handling capabilities

Limited debugging facilities

for Unix/Linux environments, text

What Is Infrastructure as Code (l1aC)?

* Infrastructure as Code means managing and provisioning IT infrastructure (like

servers, networks, and databases) using code, instead of clicking around in a dashboard.

* You write code to build your infrastructure automatically — just like writing a program

that creates your computers, servers, and connections for you.

Why laC Is Important

Benefit

Description

Consistency

Prevents “it works on my machine” issues — everyone
gets the same setup.

Speed

You can deploy or rebuild infrastructure in minutes
instead of hours.

Version Control

You can track changes and roll back just like code.

Scalability

Easy to create multiple environments (dev, test,
production).

Automation

Reduces human error and repetitive manual work.

Core Concepts of IaC
‘Declarative , You describe what you want (the desired end state).

Example: “| need one server with Ubuntu in region eastus.”
Tools like Terraform, CloudFormation, Bicep use this.
‘Imperative ,You describe how to get there step by step.
Example: “Create a VM, then install Ubuntu, then configure settings.”

Tools like Ansible or Bash scripts can use this approach.

Common laC Tools

Tool Description

Terraform Cloud-agnostic tool — works with AWS, Azure, GCP.

AWS CloudFormation For Amazon Web Services infrastructure.

Azure Bicep / ARM Templates For defining Azure infrastructure as code.

Ansible / Chef / Puppet Configuration management tools — great for software setup.

Pulumi Lets you use real programming languages (Python, TypeScript) for laC.

Infrastructure as Code (laC) to be done locally with PowerShell.

Tasks
You'll create a PowerShell script that:
«Automatically sets up a mini “infrastructure” on your PC (folders, logs, text files).

*It's repeatable and versionable — the same script gives the same setup every time
(that’s what laC is about!).

v Step 1: Create the Script
Open Notepad, paste this in, and save it as
setup environment.psl (on your Desktop).

Then run:
.\setup environment.psl

To verify:
Get-ExecutionPolicy -List

Lets create sample files and subfolders inside each of the
environment folders (Logs, pata, config)

*Save this as populate _environment.ps1

*Run it in PowerShell:
.\populate environment.psl

Automate Daily or Repetitive Tasks

You can write new PowerShell scripts that run inside this environment, such as:

A. Backup important files

Copy—-Item "C:\Users\Senv:USERNAME\Documents*.docx"
"C:\MyLocalEnvironment\Data" -Recurse

Automatically copies your documents into the Data folder.

B. Use PowerShell to List Files
Run this command:
Get-ChildItem "C:\MyLocalEnvironment\Data" -Recurse | Where-

Object { $.Extension -eqg ".docx" } | Select-Object FullName
This will print out a list of all .docx files that were copied

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

