A J/M%M%/A \

= A.H\i.H,'ll
: ; g8
_— 3\!3@ VW
W=V = Nifrs =\
\' SO0 24!!3?\ = W
\“ OSSN 304!??3\ N
e I = Y
\\\ﬂa,........."..&u,............ﬁ .ﬂ%\\ﬂ%ﬁ\ I
(/AKX SRR \\l
& N e 7:
9 ¢

i
22

A\

708 .
\ Y

AL /RA

A comprehensive exploration of the essential building blocks that power modern

computing systems - from the physical hardware foundation to advanced
software abstraction layers that enable today's digital transformation.

Hardware Fundamentals, OS
Architecture, Virtualization &

Systems and Network Administration : Topic 2
Core System Components
Containerization

What is 'the System'?

A human-computer system is an organized collaboration between humans and computers to solve a problem or provide a service.

@ Host Computers

Fixed or mobile computing devices that

run software and provide services.
Humans

Users and administrators who operate O
the infrastructure and cause most

problems.

Network Hardware

Routers, switches, and cables that

&,

connect devices and direct traffic.

Although computers are deterministic, humans are non-deterministic, making human-computer systems non-deterministic as a whole.

Made with GRVIivIA

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Foundations of

Understanding the physical components that serve as the foundation for all

computing systems and how they shape performance capabilities.

Systems and Network Administration : Topic 2

The Heart of Computing: Hardware Fundamentals

The physical backbone of all computing systems consists of four

critical components working in harmony:

- Central Processing Units (CPUs): Execute instructions and

perform calculations
- Memory: Provides temporary storage for active programs and

data
- Storage: Offers persistent data retention (HDDs, SSDs, NVMe)

- 1/O Devices: Enable communication between the system and

the outside world

Modern multicore processors place multiple processing units on a
single chip, enabling true parallel execution of tasks. This
architecture forms the foundation for:

- Multitasking operating systems

« Virtualization technologies

- Containerized applications

« High-performance computing

Hardware capabilities ultimately determine the performance

ceiling for all software running on the system.

Hardware Fundamentals (cont.)

Storage Devices
Persistent storage for data and operating systems.

HDDs (Hard Disk Drives): Traditional magnetic storage, higher capacity, lower cost,

slower.
SSDs (Solid State Drives): Flash-based storage, significantly faster, more durable, higher

cost.

NVMe (Non-Volatile Memory Express): High-performance interface for SSDs, direct PCle

connection.

Network Interface Cards (NICs)

Enables connectivity to a network, allowing data transmission.

e Wired (Ethernet): Varying speeds (Gigabit, 10 Gigabit).
e Wireless (Wi-Fi): Different standards (802.11ac, 802.11ax/Wi-Fi 6).

e Often integrated onto motherboards but can be discrete cards.

Motherboard & Chipset

The main circuit board connecting all hardware components and facilitating
communication between them.
o Determines compatibility between CPU, RAM, and other peripherals.

 The chipset manages data flow and peripheral connectivity.

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Multicore Processing: Power in Parallel

Chip Multiprocessing (CMP)

Multiple independent processor cores
Integrated onto a single physical chip,
sharing cache memory and
interconnects while operating

independently.

True Concurrency

Unlike earlier multitasking systems that
rapidly switched between tasks,
multicore processors execute multiple
threads truly simultaneously,
dramatically improving system

throughput.

Virtualization Foundation

Multicore architecture enables
hypervisors to assign dedicated cores to
different virtual machines, providing
resource isolation while maximizing

hardware utilization.

Modern processors range from dual-core systems in budget devices to 64+ core processors in high-end servers, with each core potentially

supporting multiple threads through technologies like Intel's Hyper-Threading.

Systems and Network Administration : Topic 2

219211015

1/0

CONTROLLER

% =° Multicore CPU Architecture
——

The diagram shows how multiple processing cores are integrated onto a single

die, with shared cache memory layers, memory controllers, and 1/O interfaces.

Each core contains its own registers and execution units but communicates

through common pathways to system resources.

e This architecture enables simultaneous execution of multiple tasks while

MEMORY /o maintaining efficient access to shared resources, forming the foundation for
CONTEFFACES ’

f“)lli u M éyi 'gli modern computing capabilities.

Systems and Network Administration : Topic 2

Hardware Challenges: Resource Sharing &

If%((e) IJ'iQiFei Qelgource Problem

Physical hardware resources are inherently limited and must be

allocated efficiently:

CPU cycles must be distributed among competing processes
Memory capacity must be partitioned to prevent conflicts
|/O bandwidth must be managed to prevent bottlenecks

Storage access must be coordinated to maintain data integrity

The Isolation Imperative

Applications and users require protection from each other:

« Preventing one application from accessing another's memory
- Stopping malicious software from accessing privileged

resources
- Ensuring fair access to shared resources

« Maintaining system stability when individual applications fail

Hardware alone cannot provide the flexibility and security modern
systems need—this is where operating systems, virtualization, and

containerization enter the picture.

Architecture

=
Q
)
n
>
wn
on
-
—
O
—
Q
Q.
O

Operating System Architecture

The operating system (OS) is the software layer that manages computer hardware and software resources, providing common services

for computer programs. It's the crucial intermediary between hardware and applications.

Kernel: The core of the OS, managing system resources like memory, CPU, and I/O devices. It acts as a bridge between applications and

hardware.
Shell: The user interface for the OS, allowing users to interact with the kernel. Can be command-line (CLI) or graphical (GUI).

File System: Organizes and manages files and directories on storage devices, defining how data is stored and retrieved.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

2]

B&/%8
Kernel

HEWCEL

™ 1SST

E3dware: LEHEM

Orgating
Raysipes

Applications
|

Operating Systems

An operating system has several key elements:

o

Technical Layer Filesystem

Software for driving hardware
components like disk drives, logically

keyboard, and screen

(-1

User Interface

Enables users to run programs and manipulate files

Provides a way of organizing files

The kernel is central to an operating system, responsible for allocating and sharing

resources between running programs or processes. It's supplemented by supporting

services that extend resource sharing to the network domain.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Operating System Architecture Functions /elements

Process Management

The OS is responsible for creating, scheduling, and
terminating processes, ensuring efficient utilization of the
CPU. This includes managing concurrency and inter-

process communication.

3 Device Management

Controlling peripheral devices (printers, scanners, USB
drives) via device drivers, handling I/O operations, and

mediating access to hardware resources.

Memory Management

Allocating and deallocating memory to various processes,
preventing conflicts, and ensuring optimal memory usage

through techniques like virtual memory and paging.

Security and Protection

Implementing mechanisms to protect system resources
from unauthorized access, managing user permissions, and

enforcing access control policies.

Understanding these core functions helps in troubleshooting performance issues, configuring systems optimally, and ensuring system

stability in diverse environments.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Process & Memory Management

Process Management
The OS maintains process control blocks (PCBs) containing:

« Process state (running, ready, blocked)
- Program counter and register values
- Memory allocation information

- Resource ownership and accounting data

The OS scheduler determines which processes run when,
implementing algorithms like round-robin, priority scheduling, or

completely fair scheduling.

Virtual Memory
Virtual memory creates an abstraction that:

« Gives each process its own address space
« Allows programs to use more memory than physically available
« Protects processes from accessing each other's memory

- Enables efficient memory sharing for libraries

The Memory Management Unit (MMU) translates virtual addresses

to physical addresses using page tables maintained by the OS.

Systems and Network Administration : Topic 2

OS Kernel: The Core Manager

The kernel is the central, privileged component of an operating system that operates in
protected memory with direct hardware access. It provides the foundation for all OS
functionality through:

CPU Scheduling

Determines which processes receive processor time and for how long, implementing

scheduling algorithms to balance throughput, latency, and fairness

Memory Management

Controls physical and virtual memory allocation, implementing paging, segmentation,

and protection mechanisms

Device Management
Communicates with hardware through device drivers, abstracting device-specific

details from applications

System Calls
Provides secure interfaces for applications to request kernel services, enforcing

permission checks

Systems and Network Administration : Topic 2

OS Architecture Variants

Monolithic Kernel Microkernel
All OS services run in privileged kernel Minimal kernel handles only essential
space as a single large program. functions; most services run as user
Examples: Linux, traditional Unix processes. Examples: MINIX, QNX
« Pros: High performance due to « Pros: Higher stability, modularity,
direct function calls between and security
components « Cons: Potential performance
- Cons: Lower stability (one bug can overhead due to message passing

crash entire system), larger

codebase

Hybrid Kernel
Combines aspects of both approaches
for balance. Examples: Windows NT,

macOS (XNU)
- Pros: Flexibility to optimize critical

components
« Cons: More complex design and

potential inconsistencies

Each architecture represents different trade-offs between performance, security, stability, and development complexity.

Systems and Network Administration : Topic 2

tecture

The layered architecture of modern operating systems creates a hierarchy of
abstractions, with each layer building upon the capabilities provided by lower
1. Hardware Layer: Physical components (CPU, memory, devices)

2. Kernel Space: Privileged code with direct hardware access

3. System Call Interface: Controlled boundary for application requests

5. Application Runtime: Language-specific environments (JVM, .NET)

6. User Applications: End-user programs with restricted permissions

This layering enables security, abstraction, and modularity while managing

4. System Libraries: Standard functions and APIs

Layered OS Arch

layers:
complexity.

==

g
)

A
= ;@ .
9 i o— = /p' \ w.\!lﬂ
n-:m., O 4\\@..},« ‘!‘IIH /\ G & A)
57 A Y > = rﬂéa,wf Aﬁ\hﬂ

A

e e .
=\ ‘.,i,...,c,:uw.

ERCANE o_— i \U
INY B\ — o WY \
4\‘//\\%///%.... \. \ X \N’\Q\\ s
v A\ TRy O/V
.%.///«rw,ﬂoﬂ- nI“\»/é N AN/ .
VSR €AV
5 ‘I.ILIQ(E o) ! R((¢
=\ =) s \ A\ _
! \\\M/ \ Y/ —, «P’ / /p
O

N\

Virtualization

Platforms

What is Virtualization?

Virtualization is the process of creating a virtual version of hardware or
software resources such as servers, storage, networks, or even entire
operating systems.

What is a Virtualization Platform?

A virtualization platform (also called a hypervisor) is software that enables
virtualization by creating and managing multiple virtual machines on a
single physical system.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Jlattorms

1Al ZAliOf
_[e e v 1 D O L I:']
a) Bare-Mt_ataI Hypervisor_s b) Hosted Hypervisors
*Installed directly on physical hardware. -Installed on top of an existing OS like
‘Used in data centers and enterprise environments for Windows or Linux.
performance and security. -Suitable for personal or development use.
Examples: | Examples:
VVMware ESXi *Oracle VirtualBox
*Microsoft Hyper-V (Server version) \VMware Workstation
-Citrix XenServer Parallels Desktop (for macOS)
*KVM (Kernel-based Virtual Machine)
Advantages:

Ao!vantages: Easy to install and use
High performance Great for testing and learning environments
Better stability and efficiency
*I[deal for production servers Disadvantages:

_ Lower performance than Type 1
Disadvantages: Other Virtualization Types *Dependent on the host OS’s stability
‘Requires dedicated hardware -Desktop Virtualization — Running multiple OS environments on a single
More complex to set up desktop.

*Network Virtualization — Using software to create isolated networks (e.g.,
SDN — Software Defined Networking).

*Application Virtualization — Running applications in a contained
environment (e.q.. Docker. Citrix).

https://gamma.app/?utm_source=made-with-gamma

Benefits of Virtualization Platforms

Resource Consolidation

Run multiple virtual servers on a single
physical server, reducing hardware

costs and power consumption.

Simplified Management

Centralized management of virtual

infrastructure through hypervisor tools.

Increased Agility

Rapid provisioning of new servers and
applications, enabling quicker response

to business demands.

Improved Disaster Recovery

VMs can be easily backed up, replicated,
and migrated, facilitating faster recovery

from failures.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Hypervisors: The Virtual Machine Managers

Type 1Hypervisors (Bare-Metal) Type 2 Hypervisors (Hosted)

Run directly on host hardware with no underlying OS Run as applications on conventional operating systems

« Examples: VMware ESXi, Microsoft Hyper-V, Xen - Examples: Oracle VirtualBox, VMware Workstation, Parallels
- Higher performance and security - Easier setup and management
- Primary choice for data centers and production environments - Suitable for development, testing, and desktop virtualization

Hypervisors employ sophisticated resource allocation algorithms and hardware-assisted virtualization features (Intel VT-x, AMD-V) to achieve near-native performance
while maintaining isolation.

Systems and Network Administration : Topic 2

Virtual Machines vs Physical Machines

Complete Hardware Stack Emulation

Each VM includes virtualized CPU, memory, storage, networking, and peripheral devices that

mimic physical equivalents. This allows running unmodified operating systems.

Independent Operating Systems
Each VM boots its own complete OS instance (Windows, Linux, etc.), requiring full OS

resource overhead including kernel, services, and libraries for each VM.

Strong Isolation Boundaries
VMs are securely separated with minimal shared components. Security vulnerabilities or

crashes in one VM rarely affect others or the host system.

Resource Overhead

Each VM requires dedicated memory allocation and storage space, plus CPU overhead for

virtualization operations, resulting in fewer VMs per host than containers.

Despite the overhead, hardware-assisted virtualization and paravirtualization techniques have dramatically improved VM performance to near-native speeds for many workloads.

Systems and Network Administration : Topic 2

Virtualization B

Server Consolidation

Organizations can consolidate multiple underutilized physical

servers onto fewer hosts, achieving:

Reduced hardware costs (CAPEX)
Lower power and cooling expenses (OPEX)
Smaller data center footprint

Better resource utilization (from 15% to 80%-+)

enefits & Use Cases

Additional Benefits

Testing & Development: Create isolated environments for

different OS versions and configurations
Legacy Application Support: Run older software on modern

hardware
Disaster Recovery: VM snapshots and quick migration

High Availability: Live migration between physical hosts

Multi-tenant Environments: Securely host multiple customers

Virtualization has become the foundation of modern data centers and cloud computing platforms, enabling flexible resource allocation and

management.

Systems and Network Administration : Topic 2

Virtualization Limitations

Resource Overhead
Each VM requires:

- Memory reservation for OS kernel

and services
- Storage space for full OS installation

« CPU cycles for virtualization layer

This overhead limits VM density on

physical hosts compared to containers.

Performance Impact

Despite improvements, virtualization

can still affect performance:

|/O operations often show

measurable overhead
Resource-intensive applications may

experience latency
Memory over-commitment can

cause swapping

Operational Complexity

Managing VMs at scale introduces

challenges:

VM sprawl (uncontrolled

proliferation)
Complex licensing requirements

Patching and maintenance overhead

VM lifecycle management

These limitations have driven the development of containerization as a complementary technology, offering different trade-offs for

appropriate workloads.

Systems and Network Administration : Topic 2

...“.. \\‘.‘\.‘..\.\\\!\i‘!\\\.‘\.‘.‘.\‘!.
P L e 1 1 1
...\\.r .«h‘l\hulllll-ll.n |-\lllllnll.l.

LA 3
N\ K
Ly —————) 0.

o o s s o

N = .cbc.ﬂcoé.’. N

.'\0 \’4

Lamnnnaat WS :
Ww/"/‘flﬂf/"f " Gl e

Sy T — T — —

C 2
c wn
O ; E
. O + O b=
— c o O @)
t o= \O (D) S
i ! wn — —
q0] © © = Lo o =
c 2 = 7))
N z £ E =237 v
" © s k= o £ 0
w = S §5E€8 i o3
s > O oTy]
n M n ﬂa a w c Cc ©
) v O w o P T 0
" O - 3} o Y O O = .
2 — c n S— n S 0
(© = S5 82 =z Z g
- © B ¢ ®& QL o B o S
0 a w O ¢ < L 0 2 £
C 0 2 X 0 o &8 £ g
@ = o S 5
av.lp wn ° ° ° w m
&= o —
[] i a
W © =
D) + = .©
V O m _k_u _)
S Q N n 0
m 1__ R O (D]
C = @ L&))
e O > = o) g
) S L= 9 . 505
" p— C Q. — O % O 0 W % (4]
t (D) = C o n
cC 2 C t ¥ o S € m & 9
a ~~ @) > w o5 o QO c o
v + O c -
= - c © - cC o O
n p— < .u > it m (D) .w ﬂ c <
e bt = = 9o . 25 = s O
A4
M = 3 5 S =5z w E =
= .. a =5 c a (@]
5 O =G @ > 8 % = £ 3
| . < c 5 n 2 C S 5 & a <
O I @) o + .= (D) —
" — q)) S O S 20 abh 3d a o
o c O
> 0 2§ & =
— O DH ° ° ° - o

‘§\
NP
S
N
N

2
“

e

Containerization

Basics

ool SR B8
il m”‘v'n'.‘-"'! S
I p
- ““"0$' U
D

I
‘|.|j!§§;! “lmn
W U
“{

Systems and Network Administration : Topic 2

What is Containerization?

Containerization is an OS-level virtualization method for deploying and running distributed applications without launching

an entire VM for each application.

Containerization is a technology that allows applications to run in lightweight, isolated environments called containers.

: Key container attributes:
containers:

« Share the host OS kernel Lightweight: Minimal resource footprint

. Runas isolated processes in user space Portable: Run consistently across environments

Immutable: Unchanged after creation for consistency

« Include only the application and its dependencies
Ephemeral: Designed for statelessness and replaceability

- Utilize OS features like namespaces and cgroups for isolation

Key Benefits:

. Portability: Containers can run consistently across different

environments (development, testing, production).

. Scalability: Easier to scale applications up or down by deploying or
removing containers.
. Efficiency: Lighter weight and faster startup times compared to

VMs due to shared kernel.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Container Components &

Runtimes

Container Images

Lightweight, portable packages
containing:

- Application code

« Runtime environment (Node.js, Java,

etc.)
- System libraries and dependencies

- Configuration files
Images are built in layers, promoting

reuse and efficiency

Container Runtimes

Software that executes containers:

Docker: Popular developer-focused

platform
- containerd: Industry-standard core

runtime
« CRI-O: Lightweight Kubernetes-

specific runtime
« rkt: Security-focused alternative

runtime

Orchestration Platforms

Systems for managing container

clusters:

« Kubernetes: De facto standard for

container orchestration
- Docker Swarm: Simplified

orchestration from Docker
« Amazon ECS: AWS-specific

container service
. Azure Container Instances:

Serverless container platform

These components work together to create a complete containerization ecosystem that supports modern application development and

deployment practices.

Container platforms

container platforms are the tools and systems used to create, run, and manage

containers.
Popular Container Platforms

‘Docker — Most widely used platform for building and running containers.
Kubernetes — Orchestration tool to manage and scale many containers.
‘Podman, OpenShift, and containerd — Other options used in
enterprise environments.

So what's a container?

Made with GARMINNA

https://gamma.app/?utm_source=made-with-gamma

Kubernetes Explained

DOCKER EXPLAINED By Cats
BY CATS

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Containers vs Virtual Machines

While both technologies provide isolation and resource allocation, they
operate at different abstraction levels. VMs virtualize the entire
hardware stack, while containers virtualize at the operating system

level, sharing the kernel while maintaining process isolation.

This fundamental difference drives their respective performance

characteristics, security profiles, and appropriate use cases.

Systems and Network Administration : Topic 2

Security Considerations in Containerization

Shared Kernel Risks Image Vulnerabilities

All containers on a host share the same OS kernel, creating a larger Container images may contain vulnerable packages or malicious
attack surface than VMs. Kernel exploits could potentially affect all code. Implement scanning tools like Trivy, Clair, or Snyk to detect
containers on a host. vulnerabilities before deployment.

Runtime Protection Access Controls

Use security tools that monitor container behavior at runtime. Implement principle of least privilege for containers. Use non-root
Implement pod security policies, seccomp profiles, and AppArmor to users inside containers and remove unnecessary capabilities with
restrict container capabilities. security contexts.

Container security requires a multi-layered approach spanning the build pipeline, registry, orchestration platform, and runtime environment. Best

practices include using minimal base images, regular patching, and comprehensive isolation controls.

Systems and Network Administration : Topic 2

Container Use Cases & Industry Adoption

Primary Use Cases

- Cloud-Native Applications: Microservices-based applications

designed for cloud deployment
- CI/CD Pipelines: Consistent build and test environments

- DevOps Workflows: Bridging development and operations
- Edge Computing: Lightweight deployment to resource-

constrained devices
- Batch Processing: Scalable, ephemeral compute jobs

Industry Adoption

According to the Cloud Native Computing Foundation (CNCF)

survey:

92% of organizations use containers in production
Kubernetes has become the dominant orchestration platform
Financial services, healthcare, and retail lead adoption
Average organization runs hundreds to thousands of

containers

From startups to enterprises, containers have become a standard

deployment mechanism for modern applications.

:Ontainers sha re the hostSystemsand Network Administration : Topic 2
)S kernel while maintainin
process isolation

Container

App + Ap¥

Libs

op +

HOST OS KERNEL

HOST HARDWARE

Container Architecture

Container architecture is the structure that shows how containers are built, run,

and managed.

Containers share the host operating system kernel while maintaining process

isolation:

1. Host Operating System: Provides the kernel and core services
2. Container Runtime: Manages container lifecycle and isolation

3. Container Images: Layered filesystems with application code and

dependencies
4. Application Processes: Run in isolated namespaces with resource

constraints

5. Orchestration Layer (Optional for Scaling):Manages multiple
containers in large environments. Tools like Kubernetes or Docker
Swarm:

6. Containers (Running Instances). The live, running environments created
from images.

Linux kernel features like namespaces (for isolation), cgroups (for resource control), and Union File Systems (for

layered images) form the technical foundation of container technology.

Chapter 5

Integrating Virtualization &

Containerization

Systems and Network Administration : Topic 2

Running Containers on Virtual

Machines

®

Virtualization Layer

Physical Infrastructure Hypervisor creating multiple VMs with strong isolation and

Enterprise-grade servers with virtualization capabilities (CPU, resource guarantees

memory, storage, networking)

=

Containerized Applications

Container Orchestration Microservices and applications running in containers with rapid

Kubernetes or similar platform deployed across VM cluster for deployment capabilities

container management

This hybrid approach combines VM security boundaries with container agility, providing an ideal balance for many enterprise environments.
Major cloud providers (AWS, Azure, GCP) all use this model for their container services, running customer containers on virtualized

infrastructure.

Systems and Network Administration : Topic 2

The Future: Lightweight Virtualization & Beyond

MicroVMs Serverless Containers
Lightweight VMs optimized for containers Event-driven containers that scale to zero
(e.g., AWS Firecracker, Google gVisor) (e.g., AWS Fargate, Cloud Run)

- Millisecond startup times « Noinfrastructure management

- Minimal memory footprint - - Pay-per-execution pricing

- Better isolation than containers - Automatic scaling

WebAssembly Unikernels
Portable binary code format for multiple F\?S M

Specialized, single-purpose machine images
languages

, « Application + minimal OS functionality
- Browser and server execution

, « Smaller attack surface
- Language-agnostic deployment

« Highly optimized performance
. Sandboxed execution model Iighly optimized p

These emerging technologies aim to combine the security advantages of virtualization with the performance and efficiency of containers,

creating new deployment options for cloud-native applications.

Real-World Example: Netflix's Cloud Architecture

Infrastructure Components Scale & Performance

« AWS EC2 virtual machines provide compute capacity - Handles 167 million+ subscribers worldwide

« Auto Scaling Groups respond to traffic demands - Delivers 15% of global internet traffic

- Containerized microservices using Docker - Scales instantly during peak events

« Titus container management platform (Netflix's Kubernetes - Deploys thousands of times per day
alternative) - Processes billions of metrics in real-time

Netflix exemplifies how modern platforms integrate virtualization and containerization to achieve unprecedented scale, reliability, and agility.

Their architecture demonstrates how each technology layer addresses specific requirements in a comprehensive system design.

Virtualization vs. Containerization

Isolation High (each VM has its own OS) Moderate (shared host OS kernel)

Resource Usage Higher (full OS overhead) Lower (lightweight)

Startup Time Slower (boot full OS) Faster (almost instantaneous)

Portability Portable (VM image) Highly Portable (container image)

Use Case Running different OSs, legacy apps, full Microservices, stateless apps, rapid
environment isolation deployment

Both virtualization and containerization play critical roles in modern IT infrastructure, often complementing each other. VMs provide
strong isolation for different operating systems or environments, while containers offer agility and efficiency for deploying applications

within a consistent OS.

Made with GRRMIMA

https://gamma.app/?utm_source=made-with-gamma

Systems and Network Administration : Topic 2

Summary: The Core System Components

Landscape

Applications

1 User-facing software and services
Containerization
E OS-level virtualization for lightweight app packaging
Virtualization
3 Hardware abstraction enabling multiple OS instances

Operating System

4 Resource management and service provision
Hardware
> Physical computing resources and infrastructure

Each layer builds upon the capabilities provided by the layers below it, creating a complete computing stack. Modern infrastructure leverages multiple layers simultaneously,
with containers running in VMs that utilize OS features on physical or cloud hardware.

Understanding how these components interact is essential for designing efficient, scalable, and secure computing environments in today's technology landscape.

Systems and Network Administration : Topic 2

Key Takeaways

e

Layered Architecture Technology Trade-

Modern computing systems consist of interconnected layers from eftn component represents different trade-offs between performance,
hardware through OS to virtualization and containerization, each security, flexibility, and management complexity. No single approach is
addressing specific needs and challenges. optimal for all use cases.

@

Complementary Evolution Continues

Vrehimedasiemd containerization serve complementary roles rather Emerging technologies like microVMs, serverless containers, and

than competing alternatives. Many organizations leverage both unikernels continue to push boundaries, blending the strengths of
simultaneously for different workloads. different approaches to meet new challenges.

A deep understanding of these core system components enables architects and developers to make informed decisions about infrastructure design,

application deployment, and technology selection.

Systems and Network Administration : Topic 2

Call to Action: Embrace Core System Components for

Innovation

Strategic Evaluation Implementation Roadmap

Assess your current infrastructure against modern capabilities: - Start Small: Pilot projects to build experience

. Audit hardware utilization and performance bottlenecks - Develop Skills: Invest in team training on modern technologies

- Evaluate OS patches, updates, and security controls

_ , o o - Measure Results: Track performance, cost, and operational
- Consider virtualization for legacy applications and

_ o metrics

Infrastructure consolidation . . :
o o - Iterate: Continuously improve based on real-world experience
- Explore containerization for new development and application

o - Stay Informed: Monitor emerging trends and technologies
modernization

By thoughtfully integrating hardware capabilities, OS features, virtualization platforms, and containerization technologies, organizations

can build resilient, efficient, and future-ready computing environments that drive business innovation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

