
Core System Components:
Hardware Fundamentals, OS
Architecture, Virtualization &
Containerization
A comprehensive exploration of the essential building blocks that power modern
computing systems - from the physical hardware foundation to advanced
software abstraction layers that enable today's digital transformation.

Systems and Network Administration : Topic 2

preencoded.png

What is 'the System'?
A human-computer system is an organized collaboration between humans and computers to solve a problem or provide a service.

Humans

Users and administrators who operate

the infrastructure and cause most

problems.

Host Computers

Fixed or mobile computing devices that

run software and provide services.

Network Hardware

Routers, switches, and cables that

connect devices and direct traffic.

Although computers are deterministic, humans are non-deterministic, making human-computer systems non-deterministic as a whole.

https://gamma.app/?utm_source=made-with-gamma

Foundations of
Hardware

Understanding the physical components that serve as the foundation for all
computing systems and how they shape performance capabilities.

Systems and Network Administration : Topic 2

The Heart of Computing: Hardware Fundamentals
The physical backbone of all computing systems consists of four
critical components working in harmony:
• Central Processing Units (CPUs): Execute instructions and

perform calculations
• Memory: Provides temporary storage for active programs and

data
• Storage: Offers persistent data retention (HDDs, SSDs, NVMe)
• I/O Devices: Enable communication between the system and

the outside world

Modern multicore processors place multiple processing units on a
single chip, enabling true parallel execution of tasks. This
architecture forms the foundation for:
• Multitasking operating systems
• Virtualization technologies
• Containerized applications
• High-performance computing

Hardware capabilities ultimately determine the performance
ceiling for all software running on the system.

Systems and Network Administration : Topic 2

preencoded.png

Hardware Fundamentals (cont.)

Storage Devices

Persistent storage for data and operating systems.

HDDs (Hard Disk Drives): Traditional magnetic storage, higher capacity, lower cost,

slower.

SSDs (Solid State Drives): Flash-based storage, significantly faster, more durable, higher

cost.

NVMe (Non-Volatile Memory Express): High-performance interface for SSDs, direct PCIe

connection.

Network Interface Cards (NICs)

Enables connectivity to a network, allowing data transmission.

• Wired (Ethernet): Varying speeds (Gigabit, 10 Gigabit).

• Wireless (Wi-Fi): Different standards (802.11ac, 802.11ax/Wi-Fi 6).

• Often integrated onto motherboards but can be discrete cards.

Motherboard & Chipset

The main circuit board connecting all hardware components and facilitating

communication between them.

• Determines compatibility between CPU, RAM, and other peripherals.

• The chipset manages data flow and peripheral connectivity.

https://gamma.app/?utm_source=made-with-gamma

Multicore Processing: Power in Parallel

Chip Multiprocessing (CMP)
Multiple independent processor cores
integrated onto a single physical chip,
sharing cache memory and
interconnects while operating
independently.

True Concurrency
Unlike earlier multitasking systems that
rapidly switched between tasks,
multicore processors execute multiple
threads truly simultaneously,
dramatically improving system
throughput.

Virtualization Foundation
Multicore architecture enables
hypervisors to assign dedicated cores to
different virtual machines, providing
resource isolation while maximizing
hardware utilization.

Modern processors range from dual-core systems in budget devices to 64+ core processors in high-end servers, with each core potentially
supporting multiple threads through technologies like Intel's Hyper-Threading.

Systems and Network Administration : Topic 2

Multicore CPU Architecture
The diagram shows how multiple processing cores are integrated onto a single
die, with shared cache memory layers, memory controllers, and I/O interfaces.
Each core contains its own registers and execution units but communicates
through common pathways to system resources.
This architecture enables simultaneous execution of multiple tasks while
maintaining efficient access to shared resources, forming the foundation for
modern computing capabilities.

Systems and Network Administration : Topic 2

Hardware Challenges: Resource Sharing &
IsolationThe Finite Resource Problem
Physical hardware resources are inherently limited and must be
allocated efficiently:
• CPU cycles must be distributed among competing processes
• Memory capacity must be partitioned to prevent conflicts
• I/O bandwidth must be managed to prevent bottlenecks
• Storage access must be coordinated to maintain data integrity

The Isolation Imperative
Applications and users require protection from each other:

• Preventing one application from accessing another's memory
• Stopping malicious software from accessing privileged

resources
• Ensuring fair access to shared resources
• Maintaining system stability when individual applications fail

Hardware alone cannot provide the flexibility and security modern
systems need—this is where operating systems, virtualization, and
containerization enter the picture.

Systems and Network Administration : Topic 2

Operating System
Architecture

The software layer that bridges hardware capabilities with user applications,
providing resource management and services.

Systems and Network Administration : Topic 2

preencoded.png

Operating System Architecture
The operating system (OS) is the software layer that manages computer hardware and software resources, providing common services

for computer programs. It's the crucial intermediary between hardware and applications.

Kernel: The core of the OS, managing system resources like memory, CPU, and I/O devices. It acts as a bridge between applications and

hardware.

Shell: The user interface for the OS, allowing users to interact with the kernel. Can be command-line (CLI) or graphical (GUI).

File System: Organizes and manages files and directories on storage devices, defining how data is stored and retrieved.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Operating Systems
An operating system has several key elements:

Technical Layer

Software for driving hardware

components like disk drives,

keyboard, and screen

Filesystem

Provides a way of organizing files

logically

User Interface

Enables users to run programs and manipulate files

The kernel is central to an operating system, responsible for allocating and sharing

resources between running programs or processes. It's supplemented by supporting

services that extend resource sharing to the network domain.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Operating System Architecture Functions /elements

1
Process Management

The OS is responsible for creating, scheduling, and

terminating processes, ensuring efficient utilization of the

CPU. This includes managing concurrency and inter-

process communication.

2 Memory Management

Allocating and deallocating memory to various processes,

preventing conflicts, and ensuring optimal memory usage

through techniques like virtual memory and paging.

3 Device Management

Controlling peripheral devices (printers, scanners, USB

drives) via device drivers, handling I/O operations, and

mediating access to hardware resources.

4 Security and Protection

Implementing mechanisms to protect system resources

from unauthorized access, managing user permissions, and

enforcing access control policies.

Understanding these core functions helps in troubleshooting performance issues, configuring systems optimally, and ensuring system

stability in diverse environments.

https://gamma.app/?utm_source=made-with-gamma

Process & Memory Management
Process Management
The OS maintains process control blocks (PCBs) containing:

• Process state (running, ready, blocked)
• Program counter and register values
• Memory allocation information
• Resource ownership and accounting data

The OS scheduler determines which processes run when,
implementing algorithms like round-robin, priority scheduling, or
completely fair scheduling.

Virtual Memory
Virtual memory creates an abstraction that:

• Gives each process its own address space
• Allows programs to use more memory than physically available
• Protects processes from accessing each other's memory
• Enables efficient memory sharing for libraries

The Memory Management Unit (MMU) translates virtual addresses
to physical addresses using page tables maintained by the OS.

Systems and Network Administration : Topic 2

OS Kernel: The Core Manager
The kernel is the central, privileged component of an operating system that operates in
protected memory with direct hardware access. It provides the foundation for all OS
functionality through:

CPU Scheduling
Determines which processes receive processor time and for how long, implementing
scheduling algorithms to balance throughput, latency, and fairness

Memory Management
Controls physical and virtual memory allocation, implementing paging, segmentation,
and protection mechanisms

Device Management
Communicates with hardware through device drivers, abstracting device-specific
details from applications

System Calls
Provides secure interfaces for applications to request kernel services, enforcing
permission checks

Systems and Network Administration : Topic 2

OS Architecture Variants

Monolithic Kernel
All OS services run in privileged kernel
space as a single large program.
Examples: Linux, traditional Unix
• Pros: High performance due to

direct function calls between
components

• Cons: Lower stability (one bug can
crash entire system), larger
codebase

Microkernel
Minimal kernel handles only essential
functions; most services run as user
processes. Examples: MINIX, QNX
• Pros: Higher stability, modularity,

and security
• Cons: Potential performance

overhead due to message passing

Hybrid Kernel
Combines aspects of both approaches
for balance. Examples: Windows NT,
macOS (XNU)
• Pros: Flexibility to optimize critical

components
• Cons: More complex design and

potential inconsistencies

Each architecture represents different trade-offs between performance, security, stability, and development complexity.

Systems and Network Administration : Topic 2

Layered OS Architecture
The layered architecture of modern operating systems creates a hierarchy of
abstractions, with each layer building upon the capabilities provided by lower
layers:
1. Hardware Layer: Physical components (CPU, memory, devices)
2. Kernel Space: Privileged code with direct hardware access
3. System Call Interface: Controlled boundary for application requests
4. System Libraries: Standard functions and APIs
5. Application Runtime: Language-specific environments (JVM, .NET)
6. User Applications: End-user programs with restricted permissions

This layering enables security, abstraction, and modularity while managing
complexity.

Systems and Network Administration : Topic 2

Virtualization
Platforms

Creating multiple virtual machines from a single physical system, enabling
resource optimization and workload isolation.

Systems and Network Administration : Topic 2

preencoded.png

Virtualization

Virtualization is a technology that allows you to create a virtual (rather than physical) version of a resource, such as a server, desktop,

storage device, or network resource. This significantly improves resource utilization and flexibility.

What is Virtualization?

Virtualization is the process of creating a virtual version of hardware or

software resources such as servers, storage, networks, or even entire

operating systems.

What is a Virtualization Platform?

A virtualization platform (also called a hypervisor) is software that enables

virtualization by creating and managing multiple virtual machines on a

single physical system.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Types of Virtualization Platforms

.

a) Bare-Metal Hypervisors

•Installed directly on physical hardware.

•Used in data centers and enterprise environments for

performance and security.

Examples:

•VMware ESXi

•Microsoft Hyper-V (Server version)

•Citrix XenServer

•KVM (Kernel-based Virtual Machine)

Advantages:

•High performance

•Better stability and efficiency

•Ideal for production servers

Disadvantages:

•Requires dedicated hardware

•More complex to set up

b) Hosted Hypervisors

•Installed on top of an existing OS like

Windows or Linux.

•Suitable for personal or development use.

Examples:

•Oracle VirtualBox

•VMware Workstation

•Parallels Desktop (for macOS)

Advantages:

•Easy to install and use

•Great for testing and learning environments

Disadvantages:

•Lower performance than Type 1

•Dependent on the host OS’s stabilityOther Virtualization Types
•Desktop Virtualization – Running multiple OS environments on a single

desktop.

•Network Virtualization – Using software to create isolated networks (e.g.,

SDN – Software Defined Networking).

•Application Virtualization – Running applications in a contained

environment (e.g., Docker, Citrix).

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Benefits of Virtualization Platforms

Resource Consolidation

Run multiple virtual servers on a single

physical server, reducing hardware

costs and power consumption.

Increased Agility

Rapid provisioning of new servers and

applications, enabling quicker response

to business demands.

Improved Disaster Recovery

VMs can be easily backed up, replicated,

and migrated, facilitating faster recovery

from failures.

Simplified Management

Centralized management of virtual

infrastructure through hypervisor tools.

https://gamma.app/?utm_source=made-with-gamma

Hypervisors: The Virtual Machine Managers

Type 1 Hypervisors (Bare-Metal)
Run directly on host hardware with no underlying OS
• Examples: VMware ESXi, Microsoft Hyper-V, Xen
• Higher performance and security
• Primary choice for data centers and production environments

Type 2 Hypervisors (Hosted)
Run as applications on conventional operating systems
• Examples: Oracle VirtualBox, VMware Workstation, Parallels
• Easier setup and management
• Suitable for development, testing, and desktop virtualization

Hypervisors employ sophisticated resource allocation algorithms and hardware-assisted virtualization features (Intel VT-x, AMD-V) to achieve near-native performance
while maintaining isolation.

Systems and Network Administration : Topic 2

Virtual Machines vs Physical Machines
Complete Hardware Stack Emulation

Each VM includes virtualized CPU, memory, storage, networking, and peripheral devices that
mimic physical equivalents. This allows running unmodified operating systems.

Independent Operating Systems
Each VM boots its own complete OS instance (Windows, Linux, etc.), requiring full OS
resource overhead including kernel, services, and libraries for each VM.

Strong Isolation Boundaries
VMs are securely separated with minimal shared components. Security vulnerabilities or

crashes in one VM rarely affect others or the host system.

Resource Overhead
Each VM requires dedicated memory allocation and storage space, plus CPU overhead for
virtualization operations, resulting in fewer VMs per host than containers.

Despite the overhead, hardware-assisted virtualization and paravirtualization techniques have dramatically improved VM performance to near-native speeds for many workloads.

Systems and Network Administration : Topic 2

Virtualization Benefits & Use Cases
Server Consolidation
Organizations can consolidate multiple underutilized physical
servers onto fewer hosts, achieving:
• Reduced hardware costs (CAPEX)
• Lower power and cooling expenses (OPEX)
• Smaller data center footprint
• Better resource utilization (from 15% to 80%+)

Additional Benefits
• Testing & Development: Create isolated environments for

different OS versions and configurations
• Legacy Application Support: Run older software on modern

hardware
• Disaster Recovery: VM snapshots and quick migration
• High Availability: Live migration between physical hosts
• Multi-tenant Environments: Securely host multiple customers

Virtualization has become the foundation of modern data centers and cloud computing platforms, enabling flexible resource allocation and
management.

Systems and Network Administration : Topic 2

Virtualization Limitations

Resource Overhead
Each VM requires:
• Memory reservation for OS kernel

and services
• Storage space for full OS installation

• CPU cycles for virtualization layer
This overhead limits VM density on
physical hosts compared to containers.

Performance Impact
Despite improvements, virtualization
can still affect performance:
• I/O operations often show

measurable overhead
• Resource-intensive applications may

experience latency
• Memory over-commitment can

cause swapping

Operational Complexity
Managing VMs at scale introduces
challenges:
• VM sprawl (uncontrolled

proliferation)
• Complex licensing requirements
• Patching and maintenance overhead
• VM lifecycle management

These limitations have driven the development of containerization as a complementary technology, offering different trade-offs for
appropriate workloads.

Systems and Network Administration : Topic 2

Virtualization vs. Containerization
Performance
The chart illustrates key performance differences between virtual machines and
containers:

Resource Utilization

• VMs typically require 100MB-1GB+
RAM per instance at idle

• Containers may use as little as 5-
10MB RAM per instance

• Storage requirements show
similar patterns (GB vs. MB)

Startup Times

• VMs generally boot in 30-60+
seconds

• Containers start in milliseconds
to a few seconds

• This difference is critical for
elastic scaling scenarios

These performance characteristics influence architectural decisions for
different workload types and operational requirements.

Systems and Network Administration : Topic 2

Containerization
Basics

Lightweight OS-level virtualization that packages applications with their
dependencies, enabling portable and efficient deployments.

Systems and Network Administration : Topic 2

What is Containerization?
Containerization is an OS-level virtualization method for deploying and running distributed applications without launching
an entire VM for each application.
Containerization is a technology that allows applications to run in lightweight, isolated environments called containers.

containers:
• Share the host OS kernel
• Run as isolated processes in user space
• Include only the application and its dependencies
• Utilize OS features like namespaces and cgroups for isolation

Key container attributes:

• Lightweight: Minimal resource footprint
• Portable: Run consistently across environments
• Immutable: Unchanged after creation for consistency
• Ephemeral: Designed for statelessness and replaceability

Systems and Network Administration : Topic 2

preencoded.png

Key Benefits:

• Portability: Containers can run consistently across different

environments (development, testing, production).

• Efficiency: Lighter weight and faster startup times compared to

VMs due to shared kernel.

• Scalability: Easier to scale applications up or down by deploying or

removing containers.

https://gamma.app/?utm_source=made-with-gamma

Container Components &
Runtimes

Container Images
Lightweight, portable packages
containing:
• Application code
• Runtime environment (Node.js, Java,

etc.)
• System libraries and dependencies
• Configuration files
Images are built in layers, promoting
reuse and efficiency

Container Runtimes
Software that executes containers:
• Docker: Popular developer-focused

platform
• containerd: Industry-standard core

runtime
• CRI-O: Lightweight Kubernetes-

specific runtime
• rkt: Security-focused alternative

runtime

Orchestration Platforms
Systems for managing container
clusters:
• Kubernetes: De facto standard for

container orchestration
• Docker Swarm: Simplified

orchestration from Docker
• Amazon ECS: AWS-specific

container service
• Azure Container Instances:

Serverless container platform

These components work together to create a complete containerization ecosystem that supports modern application development and
deployment practices.

Systems and Network Administration : Topic 2

preencoded.png

Container platforms

container platforms are the tools and systems used to create, run, and manage

containers.

Popular Container Platforms

•Docker – Most widely used platform for building and running containers.

•Kubernetes – Orchestration tool to manage and scale many containers.

•Podman, OpenShift, and containerd – Other options used in

enterprise environments.

So what's a container?

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

https://gamma.app/?utm_source=made-with-gamma

Containers vs Virtual Machines

While both technologies provide isolation and resource allocation, they
operate at different abstraction levels. VMs virtualize the entire
hardware stack, while containers virtualize at the operating system
level, sharing the kernel while maintaining process isolation.

This fundamental difference drives their respective performance
characteristics, security profiles, and appropriate use cases.

Systems and Network Administration : Topic 2

Security Considerations in Containerization

Shared Kernel Risks
All containers on a host share the same OS kernel, creating a larger
attack surface than VMs. Kernel exploits could potentially affect all
containers on a host.

Image Vulnerabilities
Container images may contain vulnerable packages or malicious
code. Implement scanning tools like Trivy, Clair, or Snyk to detect
vulnerabilities before deployment.

Runtime Protection
Use security tools that monitor container behavior at runtime.
Implement pod security policies, seccomp profiles, and AppArmor to
restrict container capabilities.

Access Controls
Implement principle of least privilege for containers. Use non-root
users inside containers and remove unnecessary capabilities with
security contexts.

Container security requires a multi-layered approach spanning the build pipeline, registry, orchestration platform, and runtime environment. Best
practices include using minimal base images, regular patching, and comprehensive isolation controls.

Systems and Network Administration : Topic 2

Container Use Cases & Industry Adoption
Primary Use Cases
• Cloud-Native Applications: Microservices-based applications

designed for cloud deployment
• CI/CD Pipelines: Consistent build and test environments
• DevOps Workflows: Bridging development and operations
• Edge Computing: Lightweight deployment to resource-

constrained devices
• Batch Processing: Scalable, ephemeral compute jobs

Industry Adoption
According to the Cloud Native Computing Foundation (CNCF)
survey:
• 92% of organizations use containers in production
• Kubernetes has become the dominant orchestration platform
• Financial services, healthcare, and retail lead adoption
• Average organization runs hundreds to thousands of

containers
From startups to enterprises, containers have become a standard
deployment mechanism for modern applications.

Systems and Network Administration : Topic 2

Container Architecture
Container architecture is the structure that shows how containers are built, run,

and managed.

Containers share the host operating system kernel while maintaining process
isolation:

1. Host Operating System: Provides the kernel and core services
2. Container Runtime: Manages container lifecycle and isolation
3. Container Images: Layered filesystems with application code and

dependencies
4. Application Processes: Run in isolated namespaces with resource

constraints

Linux kernel features like namespaces (for isolation), cgroups (for resource control), and Union File Systems (for
layered images) form the technical foundation of container technology.

Systems and Network Administration : Topic 2

6. Containers (Running Instances). The live, running environments created
from images.

5. Orchestration Layer (Optional for Scaling):Manages multiple
containers in large environments. Tools like Kubernetes or Docker
Swarm:

Chapter 5
Integrating Virtualization &

Containerization
Combining approaches to leverage the strengths of both technologies for

optimal infrastructure design.

Systems and Network Administration : Topic 2

Running Containers on Virtual
Machines

Physical Infrastructure
Enterprise-grade servers with virtualization capabilities (CPU,
memory, storage, networking)

Virtualization Layer
Hypervisor creating multiple VMs with strong isolation and
resource guarantees

Container Orchestration
Kubernetes or similar platform deployed across VM cluster for
container management

Containerized Applications
Microservices and applications running in containers with rapid
deployment capabilities

This hybrid approach combines VM security boundaries with container agility, providing an ideal balance for many enterprise environments.
Major cloud providers (AWS, Azure, GCP) all use this model for their container services, running customer containers on virtualized
infrastructure.

Systems and Network Administration : Topic 2

The Future: Lightweight Virtualization & Beyond
MicroVMs

Lightweight VMs optimized for containers
(e.g., AWS Firecracker, Google gVisor)

• Millisecond startup times
• Minimal memory footprint
• Better isolation than containers

Serverless Containers
Event-driven containers that scale to zero
(e.g., AWS Fargate, Cloud Run)
• No infrastructure management
• Pay-per-execution pricing
• Automatic scaling

Unikernels
Specialized, single-purpose machine images
• Application + minimal OS functionality
• Smaller attack surface
• Highly optimized performance

WebAssembly
Portable binary code format for multiple

languages
• Browser and server execution
• Language-agnostic deployment
• Sandboxed execution model

These emerging technologies aim to combine the security advantages of virtualization with the performance and efficiency of containers,
creating new deployment options for cloud-native applications.

Systems and Network Administration : Topic 2

Real-World Example: Netflix's Cloud Architecture

Infrastructure Components
• AWS EC2 virtual machines provide compute capacity
• Auto Scaling Groups respond to traffic demands
• Containerized microservices using Docker
• Titus container management platform (Netflix's Kubernetes

alternative)

Scale & Performance
• Handles 167 million+ subscribers worldwide
• Delivers 15% of global internet traffic
• Scales instantly during peak events
• Deploys thousands of times per day
• Processes billions of metrics in real-time

Netflix exemplifies how modern platforms integrate virtualization and containerization to achieve unprecedented scale, reliability, and agility.
Their architecture demonstrates how each technology layer addresses specific requirements in a comprehensive system design.

preencoded.png

Virtualization vs. Containerization

Isolation High (each VM has its own OS) Moderate (shared host OS kernel)

Resource Usage Higher (full OS overhead) Lower (lightweight)

Startup Time Slower (boot full OS) Faster (almost instantaneous)

Portability Portable (VM image) Highly Portable (container image)

Use Case Running different OSs, legacy apps, full

environment isolation

Microservices, stateless apps, rapid

deployment

Both virtualization and containerization play critical roles in modern IT infrastructure, often complementing each other. VMs provide

strong isolation for different operating systems or environments, while containers offer agility and efficiency for deploying applications

within a consistent OS.

https://gamma.app/?utm_source=made-with-gamma

Summary: The Core System Components
Landscape

1
Applications
User-facing software and services

2
Containerization
OS-level virtualization for lightweight app packaging

3
Virtualization
Hardware abstraction enabling multiple OS instances

4
Operating System
Resource management and service provision

5
Hardware
Physical computing resources and infrastructure

Each layer builds upon the capabilities provided by the layers below it, creating a complete computing stack. Modern infrastructure leverages multiple layers simultaneously,
with containers running in VMs that utilize OS features on physical or cloud hardware.

Understanding how these components interact is essential for designing efficient, scalable, and secure computing environments in today's technology landscape.

Systems and Network Administration : Topic 2

Key Takeaways

Layered Architecture
Modern computing systems consist of interconnected layers from
hardware through OS to virtualization and containerization, each
addressing specific needs and challenges.

Technology Trade-
offsEach component represents different trade-offs between performance,
security, flexibility, and management complexity. No single approach is
optimal for all use cases.

Complementary
TechnologiesVirtualization and containerization serve complementary roles rather
than competing alternatives. Many organizations leverage both
simultaneously for different workloads.

Evolution Continues
Emerging technologies like microVMs, serverless containers, and
unikernels continue to push boundaries, blending the strengths of
different approaches to meet new challenges.

A deep understanding of these core system components enables architects and developers to make informed decisions about infrastructure design,
application deployment, and technology selection.

Systems and Network Administration : Topic 2

Call to Action: Embrace Core System Components for
Innovation
Strategic Evaluation
Assess your current infrastructure against modern capabilities:

• Audit hardware utilization and performance bottlenecks
• Evaluate OS patches, updates, and security controls
• Consider virtualization for legacy applications and

infrastructure consolidation
• Explore containerization for new development and application

modernization

Implementation Roadmap
• Start Small: Pilot projects to build experience
• Develop Skills: Invest in team training on modern technologies

• Measure Results: Track performance, cost, and operational
metrics

• Iterate: Continuously improve based on real-world experience
• Stay Informed: Monitor emerging trends and technologies

By thoughtfully integrating hardware capabilities, OS features, virtualization platforms, and containerization technologies, organizations
can build resilient, efficient, and future-ready computing environments that drive business innovation.

Systems and Network Administration : Topic 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

