
Big Data Analytics

144

CHAPTER 4

MACHINE LEARNING, STREAMS AND DATABASE ON SPARK

4.1 SPARK: REAL TIME CLUSTER COMPUTING FRAMEWORK [36]

Apache Spark is an open-source cluster computing framework for real-time processing. It
is of the most successful projects in the Apache Software Foundation. Spark has clearly
evolved as the market leader for Big Data processing. Today, Spark is being adopted by
major players like Amazon, eBay, and Yahoo! Many organizations run Spark on clusters
with thousands of nodes. We are excited to begin this exciting journey through this Spark
Tutorial blog. This blog is the first blog in the upcoming Apache Spark blog series which
will include Spark Streaming, Spark Interview Questions, Spark MLlib and others.

When it comes to Real Time Data Analytics, Spark stands as the go-to tool across all
other solutions. Through this blog, I will introduce you to this new exciting domain of
Apache Spark and we will go through a complete use case, Earthquake Detection using
Spark.

4.1.1 Real Time Analytics [36]

Before we begin, let us have a look at the amount of data generated every minute by
social media leaders.

Figure 4.1 Amount of data generated every minute. [36]

Big Data Analytics

145

As we can see, there is a colossal amount of data that the internet world necessitates to
process in seconds. We will go through all the stages of handling big data in enterprises
and discover the need for a Real Time Processing Framework called Apache Spark.

To begin with, let me introduce you to few domains using real-time analytics big time in
today’s world.

Figure 4.2 Examples of Real Time Analytics. [36]

We can see that Real Time Processing of Big Data is ingrained in every aspect of our
lives. From fraud detection in banking to live surveillance systems in government,
automated machines in healthcare to live prediction systems in the stock market,
everything around us revolves around processing big data in near real time.

Let us look at some of these use cases of Real Time Analytics:

1. Healthcare: Healthcare domain uses Real Time analysis to continuously check the
medical status of critical patients. Hospitals on the look out for blood and organ
transplants need to stay in a real-time contact with each other during emergencies.
Getting medical attention on time is a matter of life and death for patients.

2. Government: Government agencies perform Real Time Analysis mostly in the field
of national security. Countries need to continuously keep a track of all the military
and police agencies for updates regarding threats to security.

3. Telecommunications: Companies revolving around services in the form of calls,
video chats and streaming use real-time analysis to reduce customer churn and stay

Big Data Analytics

146

ahead of the competition. They also extract measurements of jitter and delay in
mobile networks to improve customer experiences.

4. Banking: Banking transacts with almost all of the world’s money. It becomes very
important to ensure fault tolerant transactions across the whole system. Fraud
detection is made possible through real-time analytics in banking.

5. Stock Market: Stockbrokers use real-time analytics to predict the movement of stock
portfolios. Companies re-think their business model after using real-time analytics to
analyze the market demand for their brand.

4.1.2 Why Spark when Hadoop is already there? [36]

The first of the many questions everyone asks when it comes to Spark is, “Why Spark
when we have Hadoop already?“.

To answer this, we have to look at the concept of batch and real-time processing. Hadoop
is based on the concept of batch processing where the processing happens of blocks of
data that have already been stored over a period of time. At the time, Hadoop broke all
the expectations with the revolutionary MapReduce framework in 2005. Hadoop
MapReduce is the best framework for processing data in batches.

This went on until 2014, till Spark overtook Hadoop. The USP for Spark was that it could
process data in real time and was about 100 times faster than Hadoop MapReduce in
batch processing large data sets.

The following figure gives a detailed explanation of the differences between processing
in Spark and Hadoop.

Big Data Analytics

147

Figure 4.3 Differences between Hadoop and Spark. [36]

Here, we can draw out one of the key differentiators between Hadoop and Spark. Hadoop
is based on batch processing of big data. This means that the data is stored over a period
of time and is then processed using Hadoop. Whereas in Spark, processing can take place
in real-time. This real-time processing power in Spark helps us to solve the use cases of
Real Time Analytics we saw in the previous section. Alongside this, Spark is also able to
do batch processing 100 times faster than that of Hadoop MapReduce (Processing
framework in Apache Hadoop). Therefore, Apache Spark is the go-to tool for big data
processing in the industry.

4.1.3 What is Apache Spark? [36]

Apache Spark is an open-source cluster computing framework for real-time processing. It
has a thriving open-source community and is the most active Apache project at the

Big Data Analytics

148

moment. Spark provides an interface for programming entire clusters with implicit data
parallelism and fault-tolerance.
It was built on top of Hadoop MapReduce and it extends the MapReduce model to
efficiently use more types of computations.

Figure 4.4 Real Time Processing in Apache Spark. [36]

4.1.4 Features of Apache Spark [36]

Spark has the following features:

Figure 4.5 Spark Features. [36]

Big Data Analytics

149

Let us look at the features in detail:

Polyglot:
Spark provides high-level APIs in Java, Scala, Python and R. Spark code can be written
in any of these four languages. It provides a shell in Scala and Python. The Scala shell
can be accessed through ./bin/spark-shell and Python shell through ./bin/pyspark from the
installed directory.

Speed:
Spark runs up to 100 times faster than Hadoop MapReduce for large-scale data
processing. Spark is able to achieve this speed through controlled partitioning. It manages
data using partitions that help parallelize distributed data processing with minimal
network traffic.

Multiple Formats:
Spark supports multiple data sources such as Parquet, JSON, Hive and Cassandra apart
from the usual formats such as text files, CSV and RDBMS tables. The Data Source API
provides a pluggable mechanism for accessing structured data though Spark SQL. Data
sources can be more than just simple pipes that convert data and pull it into Spark.

Lazy Evaluation:
Apache Spark delays its evaluation till it is absolutely necessary. This is one of the key
factors contributing to its speed. For transformations, Spark adds them to a DAG
(Directed Acyclic Graph) of computation and only when the driver requests some data,
does this DAG actually gets executed.

Real Time Computation:
Spark’s computation is real-time and has low latency because of its in-memory
computation. Spark is designed for massive scalability and the Spark team has
documented users of the system running production clusters with thousands of nodes and
supports several computational models.

Hadoop Integration:
Apache Spark provides smooth compatibility with Hadoop. This is a boon for all the Big
Data engineers who started their careers with Hadoop. Spark is a potential replacement
for the MapReduce functions of Hadoop, while Spark has the ability to run on top of an
existing Hadoop cluster using YARN for resource scheduling.

Big Data Analytics

150

Machine Learning:
Spark’s MLlib is the machine learning component which is handy when it comes to big
data processing. It eradicates the need to use multiple tools, one for processing and one
for machine learning. Spark provides data engineers and data scientists with a powerful,
unified engine that is both fast and easy to use.

4.1.5 Getting Started With Spark [36]

The first step in getting started with Spark is installation. Let us install Apache Spark
2.1.0 on Linux systems:

Installation:

1. The prerequisites for installing Spark is having Java and Scala installed.
2. Download Java in case it is not installed using below commands.

3. Download the latest Scala version from Scala Lang Official page37. Once installed,
set the scala path in ~/.bashrc file as shown below.

4. Download Spark 2.1.0 from the Apache Spark Downloads page38. You can also
choose to download a previous version.

5. Extract Spark tar using below command.

6. Set the Spark_Path in ~/.bashrc file.

Before we move further, let us start up Apache Spark on our systems and get used to the
main concepts of Spark like Spark Session, Data Sources, RDDs, DataFrames and other
libraries.

Spark Shell:
Spark’s shell provides a simple way to learn the API, as well as a powerful tool to
analyze data interactively.

Big Data Analytics

151

Spark Session:
In earlier versions of Spark, Spark Context was the entry point for Spark. For every other
API, we needed to use different contexts. For streaming, we needed StreamingContext,
for SQL sqlContext and for hive HiveContext. To solve this issue, SparkSession came
into the picture. It is essentially a combination of SQLContext, HiveContext and future
StreamingContext.

Data Sources:
The Data Source API provides a pluggable mechanism for accessing structured data
though Spark SQL. Data Source API is used to read and store structured and semi-
structured data into Spark SQL. Data sources can be more than just simple pipes that
convert data and pull it into Spark.

RDD:
Resilient Distributed Dataset (RDD) is a fundamental data structure of Spark. It is an
immutable distributed collection of objects. Each dataset in RDD is divided into logical
partitions, which may be computed on different nodes of the cluster. RDDs can contain
any type of Python, Java, or Scala objects, including user-defined classes.

Dataset:
A Dataset is a distributed collection of data. A Dataset can be constructed from JVM
objects and then manipulated using functional transformations (map, flatMap, filter, etc.).
The Dataset API is available in Scala and Java.

DataFrames:
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to
a table in a relational database or a data frame in R/Python, but with richer optimizations
under the hood. DataFrames can be constructed from a wide array of sources such as:
structured data files, tables in Hive, external databases or existing RDDs.

4.1.6 Using Spark with Hadoop [36]

The best part of Spark is its compatibility with Hadoop. As a result, this makes for a very
powerful combination of technologies. Here, we will be looking at how Spark can benefit
from the best of Hadoop.

Hadoop components can be used alongside Spark in the following ways:

 HDFS: Spark can run on top of HDFS to leverage the distributed replicated
storage.

Big Data Analytics

152

 MapReduce: Spark can be used along with MapReduce in the same Hadoop
cluster or separately as a processing framework.

 YARN: Spark applications can be made to run on YARN (Hadoop NextGen).
 Batch & Real Time Processing: MapReduce and Spark are used together where

MapReduce is used for batch processing and Spark for real-time processing.

4.1.7 Spark Components [36]

Spark components are what make Apache Spark fast and reliable. A lot of these Spark
components were built to resolve the issues that cropped up while using Hadoop
MapReduce. Apache Spark has the following components:

1. Spark Core
2. Spark Streaming
3. Spark SQL
4. GraphX
5. MLlib (Machine Learning)

Spark Core
Spark Core is the base engine for large-scale parallel and distributed data processing. The
core is the distributed execution engine and the Java, Scala, and Python APIs offer a
platform for distributed ETL application development. Further, additional libraries which
are built atop the core allow diverse workloads for streaming, SQL, and machine learning.
It is responsible for:

1. Memory management and fault recovery
2. Scheduling, distributing and monitoring jobs on a cluster
3. Interacting with storage systems

Spark Streaming
Spark Streaming is the component of Spark which is used to process real-time streaming
data. Thus, it is a useful addition to the core Spark API. It enables high-throughput and
fault-tolerant stream processing of live data streams. The fundamental stream unit is
DStream which is basically a series of RDDs (Resilient Distributed Datasets) to process
the real-time data.

Big Data Analytics

153

Figure 4.6 Spark Streaming. [36]

Spark SQL
Spark SQL is a new module in Spark which integrates relational processing with Spark’s
functional programming API. It supports querying data either via SQL or via the Hive
Query Language. For those of you familiar with RDBMS, Spark SQL will be an easy
transition from your earlier tools where you can extend the boundaries of traditional
relational data processing.

Spark SQL integrates relational processing with Spark’s functional programming. Further,
it provides support for various data sources and makes it possible to weave SQL queries
with code transformations thus resulting in a very powerful tool.

The following are the four libraries of Spark SQL.

1. Data Source API
2. DataFrame API
3. Interpreter & Optimizer
4. SQL Service

Big Data Analytics

154

Figure 4.7 Spark SQL process using all the four libraries in sequence. [36]

GraphX
GraphX is the Spark API for graphs and graph-parallel computation. Thus, it extends the
Spark RDD with a Resilient Distributed Property Graph.

The property graph is a directed multigraph which can have multiple edges in parallel.
Every edge and vertex have user defined properties associated with it. Here, the parallel
edges allow multiple relationships between the same vertices. At a high-level, GraphX
extends the Spark RDD abstraction by introducing the Resilient Distributed Property
Graph: a directed multigraph with properties attached to each vertex and edge.

To support graph computation, GraphX exposes a set of fundamental operators (e.g.,
subgraph, joinVertices, and mapReduceTriplets) as well as an optimized variant of the
Pregel API. In addition, GraphX includes a growing collection of graph algorithms and
builders to simplify graph analytics tasks.

MlLib (Machine Learning)
MLlib stands for Machine Learning Library. Spark MLlib is used to perform machine
learning in Apache Spark.

Big Data Analytics

155

Figure 4.8Machine Learning Flow Diagram / Machine Learning Tools. [36]

4.1.8 Earthquake Detection using Spark [36]

Now that we have understood the core concepts of Spark, let us solve a real-life problem
using Apache Spark. This will help give us the confidence to work on any Spark projects
in the future.

Problem Statement: To design a Real Time Earthquake Detection Model to send
lifesaving alerts, which should improve its machine learning to provide near real-time
computation results.

Use Case – Requirements:

1. Process data in real-time
2. Handle input from multiple sources
3. Easy to use system
4. Bulk transmission of alerts

We will use Apache Spark which is the perfect tool for our requirements.

Use Case – Dataset:

Big Data Analytics

156

Figure 4.9 Use Case – Earthquake Dataset. [36]

You can download the complete dataset from [39]

Before moving ahead, there is one concept we have to learn that we will be using in our
Earthquake Detection System and it is called Receiver Operating Characteristic (ROC).
An ROC curve is a graphical plot that illustrates the performance of a binary classifier
system as its discrimination threshold is varied. We will use the dataset to obtain an ROC
value using Machine Learning in Apache Spark.

Use Case – Flow Diagram:

The following illustration clearly explains all the steps involved in our Earthquake
Detection System.

Big Data Analytics

157

Figure 4.10 Flow diagram of Earthquake Detection using Apache Spark. [36]

Use Case – Spark Implementation:

Moving ahead, now let us implement our project using Eclipse IDE for Spark.

Find the Pseudo Code below:

Big Data Analytics

158

The full source code of Earthquake Detection using Apache Spark is available in [40]

From our Spark program, we obtain the ROC value to be 0.088137. We will be
transforming this value to get the area under the ROC curve.

Use Case – Visualizing Results:

We will plot the ROC curve and compare it with the specific earthquake points. Where
ever the earthquake points exceed the ROC curve, such points are treated as major
earthquakes. As per our algorithm to calculate the Area under the ROC curve, we can
assume that these major earthquakes are above 6.0 magnitude on the Richter scale.

Big Data Analytics

159

Figure 4.11 Earthquake ROC Curve. [36]

The above image shows the Earthquake line in orange. The area in blue is the ROC curve
that we have obtained from our Spark program. Let us zoom into the curve to get a better
picture.

Figure 4.12 Visualizing Earthquake Points. [36]

We have plotted the earthquake curve against the ROC curve. At points where the orange
curve is above the blue region, we have predicted the earthquakes to be major, i.e., with
magnitude greater than 6.0. Thus armed with this knowledge, we could use Spark SQL
and query an existing Hive table to retrieve email addresses and send people personalized
warning emails. Thus we have used technology once more to save human life from
trouble and make everyone’s life better.

Big Data Analytics

160

4.2 SENTIMENT ANALYSIS USING APACHE SPARK [36]

Spark Streaming is an extension of the core Spark API that enables scalable, high-
throughput, fault-tolerant stream processing of live data streams. Spark Streaming can be
used to stream live data and processing can happen in real time. Spark Streaming’s ever-
growing user base consists of household names like Uber, Netflix and Pinterest.

When it comes to Real Time Data Analytics, Spark Streaming provides a single platform
to ingest data for fast and live processing in Apache Spark. Through this blog, I will
introduce you to this new exciting domain of Spark Streaming and we will go through a
complete use case, Twitter Sentiment Analysis using Spark Streaming.

4.2.1 What is Streaming? [36]

Data Streaming is a technique for transferring data so that it can be processed as a steady
and continuous stream. Streaming technologies are becoming increasingly important with
the growth of the Internet.

Figure 4.13What is Streaming? [36]

4.2.2 Why Spark Streaming? [36]

We can use Spark Streaming to stream real-time data from various sources like Twitter,
Stock Market and Geographical Systems and perform powerful analytics to help
businesses.

Big Data Analytics

161

4.2.3 Spark Streaming Overview [36]

Spark Streaming is used for processing real-time streaming data. It is a useful addition to
the core Spark API. Spark Streaming enables high-throughput and fault-tolerant stream
processing of live data streams.

Figure 4.14 Streams in Spark Streaming [36]

The fundamental stream unit is DStream which is basically a series of RDDs to process
the real-time data.

4.2.4 Spark Streaming Features [36]

1. Scaling: Spark Streaming can easily scale to hundreds of nodes.
2. Speed: It achieves low latency.
3. Fault Tolerance: Spark has the ability to efficiently recover from failures.
4. Integration: Spark integrates with batch and real-time processing.
5. Business Analysis: Spark Streaming is used to track the behavior of customers which

can be used in business analysis.

4.2.5 Spark Streaming Workflow [36]

Spark Streaming workflow has four high-level stages. The first is to stream data from
various sources. These sources can be streaming data sources like Akka, Kafka, Flume,
AWS or Parquet for real-time streaming. The second type of sources includes HBase,
MySQL, PostgreSQL, Elastic Search, Mongo DB and Cassandra for static/batch
streaming. Once this happens, Spark can be used to perform Machine Learning on the
data through its MLlib API. Further, Spark SQL is used to perform further operations on
this data. Finally, the streaming output can be stored into various data storage systems
like HBase, Cassandra, MemSQL, Kafka, Elastic Search, HDFS and local file system.

Big Data Analytics

162

Figure 4.15 Overview Of Spark Streaming [36]

4.2.6 Spark Streaming Fundamentals [36]

1. Streaming Context
2. DStream
3. Caching
4. Accumulators, Broadcast Variables and Checkpoints

Streaming Context [36]

Streaming Context consumes a stream of data in Spark. It registers an Input DStream to
produce a Receiver object. It is the main entry point for Spark functionality. Spark
provides a number of default implementations of sources like Twitter, Akka Actor and
ZeroMQ that are accessible from the context.

Figure 4.16 Spark Streaming Context / Default Implementation Sources [36]

A StreamingContext object can be created from a SparkContext object. A SparkContext
represents the connection to a Spark cluster and can be used to create RDDs,
accumulators and broadcast variables on that cluster.

Big Data Analytics

163

DStream [36]

Discretized Stream (DStream) is the basic abstraction provided by Spark Streaming. It is
a continuous stream of data. It is received from a data source or a processed data stream
generated by transforming the input stream.

Figure 4.17 Extracting words from an Input DStream [36]

Internally, a DStream is represented by a continuous series of RDDs and each RDD
contains data from a certain interval.

Input DStreams: Input DStreams are DStreams representing the stream of input data
received from streaming sources.

Figure 4.18 The Receiver sends data onto the Input DStream where each Batch contains
RDDs [36]

Big Data Analytics

164

Every input DStream is associated with a Receiver object which receives the data from a
source and stores it in Spark’s memory for processing.

Transformations on DStreams:

Any operation applied on a DStream translates to operations on the underlying RDDs.
Transformations allow the data from the input DStream to be modified similar to RDDs.
DStreams support many of the transformations available on normal Spark RDDs.

Figure 4.19 DStream Transformations [36]

The following are some of the popular transformations on DStreams:

Big Data Analytics

165

Output DStreams:

Output operations allow DStream’s data to be pushed out to external systems like
databases or file systems. Output operations trigger the actual execution of all the
DStream transformations.

Figure 4.20 Output Operations on DStreams [36]

Caching [36]

DStreams allow developers to cache/ persist the stream’s data in memory. This is useful
if the data in the DStream will be computed multiple times. This can be done using the
persist() method on a DStream.

Figure 4.21 Caching into 2 Nodes [36]

For input streams that receive data over the network (such as Kafka, Flume, Sockets, etc.),
the default persistence level is set to replicate the data to two nodes for fault-tolerance.

Accumulators, Broadcast Variables and Checkpoints

Accumulators: Accumulators are variables that are only added through an associative
and commutative operation. They are used to implement counters or sums. Tracking
accumulators in the UI can be useful for understanding the progress of running stages.

Big Data Analytics

166

Spark natively supports numeric accumulators. We can create named or unnamed
accumulators.

Broadcast Variables: Broadcast variables allow the programmer to keep a read-only
variable cached on each machine rather than shipping a copy of it with tasks. They can be
used to give every node a copy of a large input dataset in an efficient manner. Spark also
attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
communication cost.

Checkpoints: Checkpoints are similar to checkpoints in gaming. They make it run 24/7
and make it resilient to failures unrelated to the application logic.

Figure 4.22 Features of Checkpoints [36]

4.2.7 Use Case – Twitter Sentiment Analysis [36]

Now that we have understood the core concepts of Spark Streaming, let us solve a real-
life problem using Spark Streaming.

Problem Statement: To design a Twitter Sentiment Analysis System where we populate
real-time sentiments for crisis management, service adjusting and target marketing.

Applications of Sentiment Analysis:

1. Predict the success of a movie
2. Predict political campaign success
3. Decide whether to invest in a certain company
4. Targeted advertising
5. Review products and services

Big Data Analytics

167

Spark Streaming Implementation:

Find the Pseudo Code below:

//Import the necessary packages into the Spark Program
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkContext._
...
import java.io.File

object twitterSentiment {

def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: TwitterPopularTags <consumer key> <consumer secret> "
+ "<access token> <access token secret> [<filters>]")

System.exit(1)
}

StreamingExamples.setStreamingLogLevels()
//Passing our Twitter keys and tokens as arguments for authorization
val Array(consumerKey, consumerSecret, accessToken, accessTokenSecret) =
args.take(4)

val filters = args.takeRight(args.length - 4)

// Set the system properties so that Twitter4j library used by twitter stream
// Use them to generate OAuth credentials
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
...
System.setProperty("twitter4j.oauth.accessTokenSecret", accessTokenSecret)

val sparkConf = new SparkConf().setAppName("twitterSentiment").setMaster("local[2]")
val ssc = new Streaming Context
val stream = TwitterUtils.createStream(ssc, None, filters)

//Input DStream transformation using flatMap
val tags = stream.flatMap { status => Get Text From The Hashtags }

//RDD transformation using sortBy and then map function
tags.countByValue()
.foreachRDD { rdd =>
val now = Get current time of each Tweet
rdd
.sortBy(_._2)
.map(x => (x, now))
//Saving our output at ~/twitter/ directory
.saveAsTextFile(s"~/twitter/$now")

Big Data Analytics

168

}

//DStream transformation using filter and map functions
val tweets = stream.filter {t =>
val tags = t. Split On Spaces .filter(_.startsWith("#")). Convert To Lower Case
tags.exists { x => true }
}

val data = tweets.map { status =>
val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText)
val tagss = status.getHashtagEntities.map(_.getText.toLowerCase)
(status.getText, sentiment.toString, tagss.toString())
}

data.print()
//Saving our output at ~/ with filenames starting like twitters
data.saveAsTextFiles("~/twitters","20000")

ssc.start()
ssc.awaitTermination()
}
}

The full source code of Twitter Sentiment Analysis using Spark Streaming is available in
[41]

Results:

The following are the results that are displayed in the Eclipse IDE while running the
Twitter Sentiment Streaming program.

Figure 4.23 Sentiment Analysis Output in Eclipse IDE [36]

Big Data Analytics

169

As we can see in the screenshot, all the tweets are categorized into Positive, Neutral and
Negative according to the sentiment of the contents of the tweets.

The output of the Sentiments of the Tweets is stored into folders and files according to
the time they were created. This output can be stored on the local file system or HDFS as
necessary. The output directory looks like this:

Figure 4.24 Output folders inside our ‘twitter’ project folder [36]

Here, inside the twitter directory, we can find the usernames of the Twitter users along
with the timestamp for every tweet as shown below:

Figure 4.25 Output file containing Twitter usernames with timestamp [36]

Big Data Analytics

170

Now that we have got the Twitter usernames and timestamp, let us look at the Sentiments
and tweets stored in the main directory. Here, every tweet is followed by the sentiment
emotion. This Sentiment that is stored is further used for analyzing a vast multitude of
insights by companies.

Figure 4.26 Output file containing tweets with sentiments [36]

Tweaking Code:

Now, let us modify our code a little to get sentiments for specific hashtags (topics).
Currently, Donald Trump, the President of the United States is trending across news
channels and online social media. Let us look at the sentiments associated with the
keyword ‘Trump‘.

Big Data Analytics

171

Figure 4.27 Performing Sentiment Analysis on Tweets with ‘Trump’ Keyword [36]

Moving Ahead:

As we have seen from our Sentiment Analysis demonstration, we can extract sentiments
of particular topics just like we did for ‘Trump’. Similarly, Sentiment Analytics can be
used in crisis management, service adjusting and target marketing by companies around
the world.

Companies using Spark Streaming for Sentiment Analysis have applied the same
approach to achieve the following:

1. Enhancing the customer experience
2. Gaining competitive advantage
3. Gaining Business Intelligence
4. Revitalizing a losing brand

4.3 SPARK MLLIB – MACHINE LEARNING LIBRARY OF APACHE SPARK [36]

Spark MLlib is Apache Spark’s Machine Learning component. One of the major
attractions of Spark is the ability to scale computation massively, and that is exactly what
you need for machine learning algorithms. But the limitation is that all machine learning

Big Data Analytics

172

algorithms cannot be effectively parallelized. Each algorithm has its own challenges for
parallelization, whether it is task parallelism or data parallelism.

Having said that, Spark is becoming the de-facto platform for building machine learning
algorithms and applications. The developers working on the Spark MLlib are
implementing more and more machine algorithms in a scalable and concise manner in the
Spark framework. Through this blog, we will learn the concepts of Machine Learning,
Spark MLlib, its utilities, algorithms and a complete use case of Movie Recommendation
System.

4.3.1 What is Machine Learning? [36]

Evolved from the study of pattern recognition and computational learning theory in
artificial intelligence, machine learning explores the study and construction of algorithms
that can learn from and make predictions on data – such algorithms overcome following
strictly static program instructions by making data-driven predictions or decisions,
through building a model from sample inputs.

Figure 4.28Machine Learning tools [36]

Machine learning is closely related to computational statistics, which also focuses on
prediction-making through the use of computers. It has strong ties to mathematical
optimization, which delivers methods, theory and application domains to the field. Within
the field of data analytics, machine learning is a method used to devise complex models
and algorithms that lend themselves to a prediction which in commercial use is known as
predictive analytics.

Big Data Analytics

173

There are three categories of Machine learning tasks:

1. Supervised Learning: Supervised learning is where you have input variables (x) and
an output variable (Y) and you use an algorithm to learn the mapping function from
the input to the output.

2. Unsupervised Learning: Unsupervised learning is a type of machine learning
algorithm used to draw inferences from datasets consisting of input data without
labeled responses.

3. Reinforcement Learning: A computer program interacts with a dynamic
environment in which it must perform a certain goal (such as driving a vehicle or
playing a game against an opponent). The program is provided feedback in terms of
rewards and punishments as it navigates its problem space. This concept is called
reinforcement learning.

4.3.2 Spark MLlib Overview [36]

Spark MLlib is used to perform machine learning in Apache Spark. MLlib consists
popular algorithms and utilities.

MLlib Overview:

 spark.mllib contains the original API built on top of RDDs. It is currently in
maintenance mode.

 spark.ml provides higher level API built on top of DataFrames for constructing
ML pipelines. spark.ml is the primary Machine Learning API for Spark at the
moment.

4.3.3 Spark MLlib Tools [36]

Spark MLlib provides the following tools:

 ML Algorithms: ML Algorithms form the core of MLlib. These include common
learning algorithms such as classification, regression, clustering and collaborative
filtering.

 Featurization: Featurization includes feature extraction, transformation,
dimensionality reduction and selection.

 Pipelines: Pipelines provide tools for constructing, evaluating and tuning ML
Pipelines.

Big Data Analytics

174

 Persistence: Persistence helps in saving and loading algorithms, models and
Pipelines.

 Utilities: Utilities for linear algebra, statistics and data handling.

4.3.4 MLlib Algorithms [36]

The popular algorithms and utilities in Spark MLlib are:

1. Basic Statistics
2. Regression
3. Classification
4. Recommendation System
5. Clustering
6. Dimensionality Reduction
7. Feature Extraction
8. Optimization

Let us look at some of these in detail.

Basic Statistics
Basic Statistics includes the most basic of machine learning techniques. These include:

1. Summary Statistics: Examples include mean, variance, count, max, min and
numNonZeros.

2. Correlations: Spearman and Pearson are some ways to find correlation.
3. Stratified Sampling: These include sampleBykey and sampleByKeyExact.
4. Hypothesis Testing: Pearson’s chi-squared test is an example of hypothesis testing.
5. Random Data Generation: RandomRDDs, Normal and Poisson are used to generate

random data.

Regression
Regression analysis is a statistical process for estimating the relationships among
variables. It includes many techniques for modeling and analyzing several variables when
the focus is on the relationship between a dependent variable and one or more
independent variables. More specifically, regression analysis helps one understand how
the typical value of the dependent variable changes when any one of the independent
variables is varied, while the other independent variables are held fixed.

Regression analysis is widely used for prediction and forecasting, where its use has
substantial overlap with the field of machine learning. Regression analysis is also used to

Big Data Analytics

175

understand which among the independent variables are related to the dependent variable,
and to explore the forms of these relationships. In restricted circumstances, regression
analysis can be used to infer causal relationships between the independent and dependent
variables.

Classification
Classification is the problem of identifying to which of a set of categories (sub-
populations) a new observation belongs, on the basis of a training set of data containing
observations (or instances) whose category membership is known. It is an example of
pattern recognition.

Here, an example would be assigning a given email into “spam” or “non-spam” classes or
assigning a diagnosis to a given patient as described by observed characteristics of the
patient (gender, blood pressure, presence or absence of certain symptoms, etc.).

Recommendation System
A recommendation system is a subclass of information filtering system that seeks to
predict the “rating” or “preference” that a user would give to an item. Recommender
systems have become increasingly popular in recent years, and are utilized in a variety of
areas including movies, music, news, books, research articles, search queries, social tags,
and products in general.

Recommender systems typically produce a list of recommendations in one of two ways –
through collaborative and content-based filtering or the personality-based approach.

 Collaborative Filtering approaches building a model from a user’s past behavior
(items previously purchased or selected and/or numerical ratings given to those
items) as well as similar decisions made by other users. This model is then used to
predict items (or ratings for items) that the user may have an interest in.

 Content-Based Filtering approaches utilize a series of discrete characteristics of
an item in order to recommend additional items with similar properties.

Further, these approaches are often combined as Hybrid Recommender Systems.

Clustering
Clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense or another) to each other than to
those in other groups (clusters). So, it is the main task of exploratory data mining, and a
common technique for statistical data analysis, used in many fields, including machine

Big Data Analytics

176

learning, pattern recognition, image analysis, information retrieval, bioinformatics, data
compression and computer graphics.

Dimensionality Reduction
Dimensionality Reduction is the process of reducing the number of random variables
under consideration, via obtaining a set of principal variables. It can be divided into
feature selection and feature extraction.

 Feature Selection: Feature selection finds a subset of the original variables (also
called features or attributes).

 Feature Extraction: This transforms the data in the high-dimensional space to a
space of fewer dimensions. The data transformation may be linear, as in Principal
Component Analysis(PCA), but many nonlinear dimensionality reduction
techniques also exist.

Feature Extraction
Feature Extraction starts from an initial set of measured data and builds derived values
(features) intended to be informative and non-redundant, facilitating the subsequent
learning and generalization steps, and in some cases leading to better human
interpretations. This is related to dimensionality reduction.

Optimization
Optimization is the selection of the best element (with regard to some criterion) from
some set of available alternatives.

In the simplest case, an optimization problem consists of maximizing or minimizing a
real function by systematically choosing input values from within an allowed set and
computing the value of the function. The generalization of optimization theory and
techniques to other formulations comprises a large area of applied mathematics. More
generally, optimization includes finding “best available” values of some objective
function given a defined domain (or input), including a variety of different types of
objective functions and different types of domains.

4.3.5 Use Case – Movie Recommendation System [36]

Problem Statement: To build a Movie Recommendation System which recommends
movies based on a user’s preferences using Apache Spark.

Our Requirements:
So, let us assess the requirements to build our movie recommendation system:

Big Data Analytics

177

1. Process huge amount of data
2. Input from multiple sources
3. Easy to use
4. Fast processing

As we can assess our requirements, we need the best Big Data tool to process large data
in short time. Therefore, Apache Spark is the perfect tool to implement our Movie
Recommendation System.

Let us now look at the Flow Diagram for our system.

Figure 4.29 Flow Diagram for the system [36]

As we can see, the following uses Streaming from Spark Streaming. We can stream in
real time or read data from Hadoop HDFS.

Getting Dataset:
For our Movie Recommendation System, we can get user ratings from many popular
websites like IMDB, Rotten Tomatoes and Times Movie Ratings. This dataset is
available in many formats such as CSV files, text files and databases. We can either
stream the data live from the websites or download and store them in our local file system
or HDFS.

Dataset:
The below figure shows how we can collect dataset from popular websites.

Big Data Analytics

178

Figure 4.30 How to collect dataset from popular websites [36]

Once we stream the data into Spark, it looks somewhat like this.

Big Data Analytics

179

Machine Learning:
The whole recommendation system is based on Machine Learning algorithm Alternating
Least Squares. Here, ALS is a type of regression analysis where regression is used to
draw a line amidst the data points in such a way so that the sum of the squares of the
distance from each data point is minimized. Thus, this line is then used to predict the
values of the function where it meets the value of the independent variable.

Figure 4.31Machine Learning Algorithm – Regression Alternating Least Squares [36]

The blue line in the diagram is the best-fit regression line. For this line, the value of the
dimension D is minimum. All other red lines will always be farther from the dataset as a
whole.

Spark MLlib Implementation:
1. We will use Collaborative Filtering(CF) to predict the ratings for users for

particular movies based on their ratings for other movies.
2. We then collaborate this with other users’ rating for that particular movie.
3. To get the following results from our Machine Learning, we need to use Spark

SQL’s DataFrame, Dataset and SQL Service.

Big Data Analytics

180

Here is the pseudo code for our program:

import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.SparkConf
//Import other necessary packages

object Movie {
def main(args: Array[String]) {

val conf = new SparkConf().setAppName("Movie").setMaster("local[2]")
val sc = new SparkContext(conf)
val rawData = sc.textFile(" *Read Data from Movie CSV file* ")

//rawData.first()
val rawRatings = rawData.map(*Split rawData on tab delimiter*)
val ratings = rawRatings.map { *Map case array of User, Movie and Rating* }

//Training the data
val model = ALS.train(ratings, 50, 5, 0.01)
model.userFeatures
model.userFeatures.count
model.productFeatures.count
val predictedRating = *Predict for User 789 for movie 123*
val userId = *User 789*
val K = 10
val topKRecs = model.recommendProducts(*Recommend for User for the particular
value of K*)
println(topKRecs.mkString("\n"))
val movies = sc.textFile(" *Read Movie List Data* ")
val titles = movies.map(line => line.split("\\|").take(2)).map(array =>
(array(0).toInt,array(1))).collectAsMap()
val titlesRDD = movies.map(line => line.split("\\|").take(2)).map(array =>
(array(0).toInt,array(1))).cache()
titles(123)
val moviesForUser = ratings.*Search for User 789*
val sqlContext= *Create SQL Context*
val moviesRecommended = sqlContext.*Make a DataFrame of recommended movies*
moviesRecommended.registerTempTable("moviesRecommendedTable")
sqlContext.sql("Select count(*) from moviesRecommendedTable").foreach(println)
moviesForUser. *Sort the ratings for User 789* .map(*Map the rating to movie title*).
Print the rating
val results = moviesForUser.sortBy(-_.rating).take(30).map(rating =>
(titles(rating.product), rating.rating))
}
}

Big Data Analytics

181

The full source code of Movie Recommendation System using Spark MLlib is available
in [42].

Once we generate predictions, we can use Spark SQL to store the results into an RDBMS
system. Further, this can be displayed on a web application.

Results:

Figure 4.32Movies recommended for User 77 [36]

4.4 SPARK SQL TUTORIAL – UNDERSTANDING SPARK SQLWITH
EXAMPLES [36]

Spark SQL is a new module in Spark which integrates relational processing with Spark’s
functional programming API. It supports querying data either via SQL or via the Hive
Query Language.

For those of you familiar with RDBMS, Spark SQL will be an easy transition from your
earlier tools where you can extend the boundaries of traditional relational data processing.
Through this blog, I will introduce you to this new exciting domain of Spark SQL and

Big Data Analytics

182

together we will equip ourselves to lead our organization to leverage the benefits of
relational processing and call complex analytics libraries in Spark.

4.4.1 Why Spark SQL Came Into Picture? [36]

Spark SQL originated as Apache Hive to run on top of Spark and is now integrated with
the Spark stack. Apache Hive had certain limitations as mentioned below. Spark SQL
was built to overcome these drawbacks and replace Apache Hive.

4.4.2 Limitations with Hive: [36]

 Hive launches MapReduce jobs internally for executing the ad-hoc queries.
MapReduce lags in the performance when it comes to the analysis of medium
sized datasets (10 to 200 GB).

 Hive has no resume capability. This means that if the processing dies in the
middle of a workflow, you cannot resume from where it got stuck.

 Hive cannot drop encrypted databases in cascade when trash is enabled and leads
to an execution error. To overcome this, users have to use Purge option to skip
trash instead of drop.

These drawbacks gave way to the birth of Spark SQL.

4.4.3 Spark SQL Overview [36]

Spark SQL integrates relational processing with Spark’s functional programming. It
provides support for various data sources and makes it possible to weave SQL queries
with code transformations thus resulting in a very powerful tool.

Let us explore, what Spark SQL has to offer. Spark SQL blurs the line between RDD and
relational table. It offers much tighter integration between relational and procedural
processing, through declarative DataFrame APIs which integrates with Spark code. It
also provides higher optimization. DataFrame API and Datasets API are the ways to
interact with Spark SQL.

With Spark SQL, Apache Spark is accessible to more users and improves optimization
for the current ones. Spark SQL provides DataFrame APIs which perform relational
operations on both external data sources and Spark’s built-in distributed collections. It

Big Data Analytics

183

introduces extensible optimizer called Catalyst as it helps in supporting a wide range of
data sources and algorithms in Big-data.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Microsoft, Mac OS). It
is easy to run locally on one machine — all you need is to have java installed on your
system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Figure 4.33 Architecture of Spark SQL. [36]

4.4.4 Spark SQL Libraries [36]

Spark SQL has the following four libraries which are used to interact with relational and
procedural processing:

1. Data Source API (Application Programming Interface):

This is a universal API for loading and storing structured data.

 It has built in support for Hive, Avro, JSON, JDBC, Parquet, etc.
 Supports third party integration through Spark packages
 Support for smart sources.

2. DataFrame API:

A DataFrame is a distributed collection of data organized into named column. It is
equivalent to a relational table in SQL used for storing data into tables.

Big Data Analytics

184

 It is a Data Abstraction and Domain Specific Language (DSL) applicable on
structure and semi structured data.

 DataFrame API is distributed collection of data in the form of named column and
row.

 It is lazily evaluated like Apache Spark Transformations and can be accessed
through SQL Context and Hive Context.

 It processes the data in the size of Kilobytes to Petabytes on a single-node cluster
to multi-node clusters.

 Supports different data formats (Avro, CSV, Elastic Search and Cassandra) and
storage systems (HDFS, HIVE Tables, MySQL, etc.).

 Can be easily integrated with all Big Data tools and frameworks via Spark-Core.
 Provides API for Python, Java, Scala, and R Programming.

3. SQL Interpreter And Optimizer:

SQL Interpreter and Optimizer is based on functional programming constructed in Scala.

 It is the newest and most technically evolved component of SparkSQL.
 It provides a general framework for transforming trees, which is used to perform

analysis/evaluation, optimization, planning, and run time code spawning.
 This supports cost based optimization (run time and resource utilization is termed

as cost) and rule based optimization, making queries run much faster than their
RDD (Resilient Distributed Dataset) counterparts.

e.g. Catalyst is a modular library which is made as a rule based system. Each rule in
framework focuses on the distinct optimization.

4. SQL Service:

SQL Service is the entry point for working along structured data in Spark. It allows the
creation of DataFrame objects as well as the execution of SQL queries.

4.4.5 Features Of Spark SQL [36]

The following are the features of Spark SQL:

1. Integration With Spark
Spark SQL queries are integrated with Spark programs. Spark SQL allows us to query
structured data inside Spark programs, using SQL or a DataFrame API which can be used
in Java, Scala, Python and R. To run streaming computation, developers simply write a

Big Data Analytics

185

batch computation against the DataFrame / Dataset API, and Spark automatically
increments the computation to run it in a streaming fashion. This powerful design means
that developers don’t have to manually manage state, failures, or keeping the application
in sync with batch jobs. Instead, the streaming job always gives the same answer as a
batch job on the same data.

2. Uniform Data Access

DataFrames and SQL support a common way to access a variety of data sources, like
Hive, Avro, Parquet, ORC, JSON, and JDBC. This joins the data across these sources.
This is very helpful to accommodate all the existing users into Spark SQL.
3. Hive Compatibility

Spark SQL runs unmodified Hive queries on current data. It rewrites the Hive front-end
and meta store, allowing full compatibility with current Hive data, queries, and UDFs.

4. Standard Connectivity

Connection is through JDBC or ODBC. JDBC and ODBC are the industry norms for
connectivity for business intelligence tools.

5. Performance And Scalability

Spark SQL incorporates a cost-based optimizer, code generation and columnar storage to
make queries agile alongside computing thousands of nodes using the Spark engine,
which provides full mid-query fault tolerance. The interfaces provided by Spark SQL
provide Spark with more information about the structure of both the data and the
computation being performed. Internally, Spark SQL uses this extra information to
perform extra optimization. Spark SQL can directly read from multiple sources (files,
HDFS, JSON/Parquet files, existing RDDs, Hive, etc.). It ensures fast execution of
existing Hive queries.
The image below depicts the performance of Spark SQL when compared to Hadoop.
Spark SQL executes upto 100x times faster than Hadoop.

Big Data Analytics

186

Figure 4.34 Runtime of Spark SQL vs Hadoop. Spark SQL is faster
Source: Cloudera Apache Spark Blog. [36]

6. User Defined Functions
Spark SQL has language integrated User-Defined Functions (UDFs). UDF is a feature of
Spark SQL to define new Column-based functions that extend the vocabulary of Spark
SQL’s DSL for transforming Datasets. UDFs are black boxes in their execution.
The example below defines a UDF to convert a given text to upper case.

Code explanation:
1. Creating a dataset “hello world”
2. Defining a function ‘upper’ which converts a string into upper case.
3. We now import the ‘udf’ package into Spark.
4. Defining our UDF, ‘upperUDF’ and importing our function ‘upper’.
5. Displaying the results of our User Defined Function in a new column ‘upper’.

Big Data Analytics

187

Figure 4.35 Demonstration of a User Defined Function, upperUDF. [36]

Code explanation:
1. We now register our function as ‘myUpper’
2. Cataloging our UDF among the other functions.

Figure 4.36 Results of the User Defined Function, upperUDF. [36]

Big Data Analytics

188

4.4.6 Querying Using Spark SQL [36]

We will now start querying using Spark SQL. Note that the actual SQL queries are
similar to the ones used in popular SQL clients.

Starting the Spark Shell. Go to the Spark directory and execute ./bin/spark-shell in the
terminal to being the Spark Shell.

For the querying examples shown here, we will be using two files, ’employee.txt’
and ’employee.json’. The images below show the content of both the files. Both these
files are stored at
‘examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala’ inside
the folder containing the Spark installation (~/Downloads/spark-2.0.2-bin-hadoop2.7). So,
all of you who are executing the queries, place them in this directory or set the path to
your files in the lines of code below.

Figure 4.37 Contents of employee.txt. [36]

Big Data Analytics

189

Figure 4.38 Contents of employee.json. [36]

Code explanation:
1. We first import a Spark Session into Apache Spark.
2. Creating a Spark Session ‘spark’ using the ‘builder()’ function.
3. Importing the Implicts class into our ‘spark’ Session.
4. We now create a DataFrame ‘df’ and import data from the ’employee.json’ file.
5. Displaying the DataFrame ‘df’. The result is a table of 5 rows of ages and names from
our ’employee.json’ file.

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().appName("Spark SQL basic
example").config("spark.some.config.option", "some-value").getOrCreate()
import spark.implicits._
val df = spark.read.json("examples/src/main/resources/employee.json")
df.show()

Big Data Analytics

190

Figure 4.39 Starting a Spark Session and displaying DataFrame of employee.json. [36]

Code explanation:
1. Importing the Implicts class into our ‘spark’ Session.
2. Printing the schema of our ‘df’ DataFrame.
3. Displaying the names of all our records from ‘df’ DataFrame.

Big Data Analytics

191

Figure 4.40 Schema of a DataFrame. [36]

Code explanation:
1. Displaying the DataFrame after incrementing everyone’s age by two years.
2. We filter all the employees above age 30 and display the result.

Figure 4.41 Basic SQL operations on employee.json. [36]

Big Data Analytics

192

Code explanation:
1. Counting the number of people with the same ages. We use the ‘groupBy’ function for
the same.
2. Creating a temporary view ’employee’ of our ‘df’ DataFrame.
3. Perform a ‘select’ operation on our ’employee’ view to display the table into ‘sqlDF’.
4. Displaying the results of ‘sqlDF’.

Figure 4.42 SQL operations on employee.json. [36]

4.4.7 Creating Datasets [36]

After understanding DataFrames, let us now move on to Dataset API. The below code
creates a Dataset class in SparkSQL.

Big Data Analytics

193

Code explanation:
1. Creating a class ‘Employee’ to store name and age of an employee.
2. Assigning a Dataset ‘caseClassDS’ to store the record of Andrew.
3. Displaying the Dataset ‘caseClassDS’.
4. Creating a primitive Dataset to demonstrate mapping of DataFrames into Datasets.
5. Assigning the above sequence into an array.

Figure 4.43 Creating a Dataset. [36]

Code explanation:
1. Setting the path to our JSON file ’employee.json’.
2. Creating a Dataset and from the file.
3. Displaying the contents of ’employeeDS’ Dataset.

Big Data Analytics

194

Figure 4.44 Creating a Dataset from a JSON file. [36]

4.4.8 Adding Schema To RDDs [36]

Spark introduces the concept of an RDD (Resilient Distributed Dataset), an immutable
fault-tolerant, distributed collection of objects that can be operated on in parallel. An
RDD can contain any type of object and is created by loading an external dataset or
distributing a collection from the driver program.

Schema RDD is a RDD where you can run SQL on. It is more than SQL. It is a unified
interface for structured data.

Code explanation:
1. Importing Expression Encoder for RDDs. RDDs are similar to Datasets but use
encoders for serialization.
2. Importing Encoder library into the shell.
3. Importing the Implicts class into our ‘spark’ Session.
4. Creating an ’employeeDF’ DataFrame from ’employee.txt’ and mapping the columns
based on the delimiter comma ‘,’ into a temporary view ’employee’.
5. Creating the temporary view ’employee’.
6. Defining a DataFrame ‘youngstersDF’ which will contain all the employees between
the ages of 18 and 30.
7. Mapping the names from the RDD into ‘youngstersDF’ to display the names of
youngsters.

import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder

Big Data Analytics

195

import org.apache.spark.sql.Encoder
import spark.implicits._
val employeeDF =
spark.sparkContext.textFile("examples/src/main/resources/employee.txt").map(_.split(",")
).map(attributes => Employee(attributes(0), attributes(1).trim.toInt)).toDF()
employeeDF.createOrReplaceTempView("employee")
val youngstersDF = spark.sql("SELECT name, age FROM employee WHERE age
BETWEEN 18 AND 30")
youngstersDF.map(youngster => "Name: " + youngster(0)).show()

Figure 4.45 Creating a DataFrame for transformations. [36]

Code explanation:
1. Converting the mapped names into string for transformations.
2. Using the mapEncoder from Implicits class to map the names to the ages.
3. Mapping the names to the ages of our ‘youngstersDF’ DataFrame. The result is an
array with names mapped to their respective ages.

Big Data Analytics

196

Figure 4.46Mapping using DataFrames. [36]

RDDs support two types of operations:

 Transformations: These are the operations (such as map, filter, join, union, and so
on) performed on an RDD which yield a new RDD containing the result.

 Actions: These are operations (such as reduce, count, first, and so on) that return a
value after running a computation on an RDD.

Transformations in Spark are “lazy”, meaning that they do not compute their results right
away. Instead, they just “remember” the operation to be performed and the dataset (e.g.,
file) to which the operation is to be performed. The transformations are computed only
when an action is called and the result is returned to the driver program and stored as
Directed Acyclic Graphs (DAG). This design enables Spark to run more efficiently. For
example, if a big file was transformed in various ways and passed to first action, Spark
would only process and return the result for the first line, rather than do the work for the
entire file.

Big Data Analytics

197

Figure 4.47 Ecosystem of Schema RDD in Spark SQL. [36]

By default, each transformed RDD may be recomputed each time you run an action on it.
However, you may also persist an RDD in memory using the persist or cache method, in
which case Spark will keep the elements around on the cluster for much faster access the
next time you query it.

4.4.9 RDDs As Relations [36]

Resilient Distributed Datasets (RDDs) are distributed memory abstraction which lets
programmers perform in-memory computations on large clusters in a fault tolerant
manner. RDDs can be created from any data source. Eg: Scala collection, local file
system, Hadoop, Amazon S3, HBase Table, etc.

Specifying Schema

Code explanation:
1. Importing the ‘types’ class into the Spark Shell.
2. Importing ‘Row’ class into the Spark Shell. Row is used in mapping RDD Schema.
3. Creating a RDD ’employeeRDD’ from the text file ’employee.txt’.
4. Defining the schema as “name age”. This is used to map the columns of the RDD.

Big Data Analytics

198

5. Defining ‘fields’ RDD which will be the output after mapping the ’employeeRDD’ to
the schema ‘schemaString’.
6. Obtaining the type of ‘fields’ RDD into ‘schema’.

import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
val employeeRDD =
spark.sparkContext.textFile("examples/src/main/resources/employee.txt")
val schemaString = "name age"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName,
StringType, nullable = true))
val schema = StructType(fields)

Figure 4.48 Specifying Schema for RDD transformation. [36]

Code explanation:
1. We now create a RDD called ‘rowRDD’ and transform the ’employeeRDD’ using the
‘map’ function into ‘rowRDD’.
2. We define a DataFrame ’employeeDF’ and store the RDD schema into it.
3. Creating a temporary view of ’employeeDF’ into ’employee’.
4. Performing the SQL operation on ’employee’ to display the contents of employee.
5. Displaying the names of the previous operation from the ’employee’ view.

Big Data Analytics

199

Figure 4.49 Result of RDD transformation. [36]

Even though RDDs are defined, they don’t contain any data. The computation to create
the data in a RDD is only done when the data is referenced. e.g. Caching results or
writing out the RDD.

4.4.10 Caching Tables In-Memory [36]

Spark SQL caches tables using an in-memory columnar format:

1. Scan only required columns
2. Fewer allocated objects
3. Automatically selects best comparison

4.4.11 Loading Data Programmatically [36]

The below code will read employee.json file and create a DataFrame. We will then use it
to create a Parquet file.

Code explanation:
1. Importing Implicits class into the shell.

Big Data Analytics

200

2. Creating an ’employeeDF’ DataFrame from our ’employee.json’ file.

Figure 4.50 Loading a JSON file into DataFrame. [36]

Code explanation:
1. Creating a ‘parquetFile’ temporary view of our DataFrame.
2. Selecting the names of people between the ages of 18 and 30 from our Parquet file.
3. Displaying the result of the Spark SQL operation.

Figure 4.51 Displaying results from a Parquet DataFrame. [36]

Big Data Analytics

201

4.4.12 JSON Datasets [36]

We will now work on JSON data. As Spark SQL supports JSON dataset, we create a
DataFrame of employee.json. The schema of this DataFrame can be seen below. We then
define a Youngster DataFrame and add all the employees between the ages of 18 and 30.

Code explanation:
1. Setting to path to our ’employee.json’ file.
2. Creating a DataFrame ’employeeDF’ from our JSON file.
3. Printing the schema of ’employeeDF’.
4. Creating a temporary view of the DataFrame into ’employee’.
5. Defining a DataFrame ‘youngsterNamesDF’ which stores the names of all the
employees between the ages of 18 and 30 present in ’employee’.
6. Displaying the contents of our DataFrame.

Figure 4.52 Operations on JSON Datasets. [36]

Big Data Analytics

202

Code explanation:
1. Creating a RDD ‘otherEmployeeRDD’ which will store the content of employee
George from New Delhi, Delhi.
2. Assigning the contents of ‘otherEmployeeRDD’ into ‘otherEmployee’.
3. Displaying the contents of ‘otherEmployee’.

val otherEmployeeRDD =
spark.sparkContext.makeRDD("""{"name":"George","address":{"city":"New
Delhi","state":"Delhi"}}""" :: Nil)
val otherEmployee = spark.read.json(otherEmployeeRDD)
otherEmployee.show()

Figure 4.53 RDD transformations on JSON Dataset. [36]

4.4.13 Hive Tables [36]

We perform a Spark example using Hive tables.

Code explanation:
1. Importing ‘Row’ class into the Spark Shell. Row is used in mapping RDD Schema.
2. Importing Spark Session into the shell.
3. Creating a class ‘Record’ with attributes Int and String.
4. Setting the location of ‘warehouseLocation’ to Spark warehouse.
5. We now build a Spark Session ‘spark’ to demonstrate Hive example in Spark SQL.
6. Importing Implicits class into the shell.
7. Importing SQL library into the Spark Shell.

Big Data Analytics

203

8. Creating a table ‘src’ with columns to store key and value.

import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
case class Record(key: Int, value: String)
val warehouseLocation = "spark-warehouse"
val spark = SparkSession.builder().appName("Spark Hive
Example").config("spark.sql.warehouse.dir",
warehouseLocation).enableHiveSupport().getOrCreate()
import spark.implicits._
import spark.sql
sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")

Figure 4.54 Building a Session for Hive. [36]

Code explanation:
1. We now load the data from the examples present in Spark directory into our table ‘src’.
2. The contents of ‘src’ is displayed below.

Big Data Analytics

204

Figure 4.55 Selection using Hive tables. [36]

Code explanation:
1. We perform the ‘count’ operation to select the number of keys in ‘src’ table.
2. We now select all the records with ‘key’ value less than 10 and store it in the ‘sqlDF’
DataFrame.
3. Creating a Dataset ‘stringDS’ from ‘sqlDF’.
4. Displaying the contents of ‘stringDS’ Dataset.

sql("SELECT COUNT(*) FROM src").show()
val sqlDF = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key")
val stringsDS = sqlDF.map {case Row(key: Int, value: String) => s"Key: $key, Value:
$value"}
stringsDS.show()

Big Data Analytics

205

Figure 4.56 Creating DataFrames from Hive tables. [36]

Code explanation:
1. We create a DataFrame ‘recordsDF’ and store all the records with key values 1 to 100.
2. Create a temporary view ‘records’ of ‘recordsDF’ DataFrame.
3. Displaying the contents of the join of tables ‘records’ and ‘src’ with ‘key’ as the
primary key.

Figure 4.57 Recording the results of Hive operations. [36]

Big Data Analytics

206

REFERENCES:
1. Agira corporate blog [Online]. Available:< http://www.agiratech.com/introduction-to-

big-data-analytics/> [Accessed: 10-Feb-2018].
2. Tutorialspoints [Online].

Available:< https://www.tutorialspoint.com/big_data_analytics/index.htm> [Accessed:
10-Feb-2018]

3. Bart Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and its
Applications (Wiley and SAS Business Series), Wiley; 1 edition, May 19, 2014

4. J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed. (Morgan
Kaufmann, Waltham, MA, US, 2006); D. J. Hand, H. Mannila, and P. Smyth, Principles
of Data Mining (MIT Press, Cambridge, Massachusetts, London, England, 2001); P. N.
Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining (Pearson, Upper Saddle
River, New Jersey, US, 2006).

5. D. Martens, J. Vanthienen, W. Verbeke, and B. Baesens, “Performance of Classification
Models from a User Perspective.” Special issue, Decision Support Systems 51, no. 4
(2011): 782–793.

6. J. Banasik, J. N. Crook, and L. C. Thomas, “Sample Selection Bias in Credit Scoring
Models” in Proceedings of the Seventh Conference on Credit Scoring and Credit Control
(Edinburgh University, 2001).

7. R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data (Wiley-
Interscience, Hoboken, New Jersey, 2002).

8. Bernard Marr, “Big Data Using Smart Big Data, Analytics and Metrics to Make Better
Decisions and Improve Performance”, Wiley, 2015

9. Mayer-Schonberger, V. and Cukier, K., “Big Data: A Revolution That Will Transform
How We Live, Work and Think”, London: John Murray Publishers, 2013

10. Neilson, J.P. and Mistry, R.T., “Fetal electrocardiogram plus heart rate recording for fetal
monitoring during labour”, Cochrane Database of Systematic Reviews (2), 2000

11. Dekker, J.M., Schouten, E.G., Klootwijk, P., Pool, J., Swenne, C.A. and Kromhout, D.,
“Heart rate variability from short electrocardiographic recordings predicts mortality from
all causes in Middle-aged and elderly men”, The Zutphen Study, American Journal of
Epidemiology 145 (10), 1997

12. IACP Centre for Social Media Fun Facts http://www.iacpsocialmedia.org/
Resources/FunFacts.aspx

13. BBC Two (2014) Bang goes the Theory, May 2014, Series 8: Big Data.
14. SAS Whitepaper, “Big Data meets Big Data Analytics: Three key technologies for

extracting real-time business value from the Big Data that threatens to overwhelm
traditional computing architectures”, 2012

15. IDC (2014) The Digital Universe Study, April 2014. Sponsored by EMC2
16. Chui M, Loffler M, and Roberts R, “The Internet of Things”. ¨ McKinsey Quarterly,

March 2010.
17. Kosinski, M., Stillwell, D. and Graepel, T. (2013) Private traits and attributes are

predictable from digital records of human behavior. Published online:
http://www.pnas.org/content/early

18. David Loshin, “Big Data Analytics: From Strategic Planning to Enterprise Integration
with Tools, Techniques, NoSQL, and Graph”, Morgan Kaufmann, 2013

http://www.agiratech.com/introduction-to-big-data-analytics/
http://www.agiratech.com/introduction-to-big-data-analytics/
http://www.pnas.org/content/early

Big Data Analytics

207

19. Hanson J. An introduction to the Hadoop distributed file system, accessed via
http://www.ibm.com/developerworks/library/wa-introhdfs.

20. Apache’s HDFS Architecture Guide, accessed via
http://hadoop.apache.org/docs/stable/hdfs_design.html.

21. Murthy A. Introducing Apache Hadoop YARN, accessed via
http://hortonworks.com/blog/introducing-apache-hadoop-yarn/.

22. Zookeeper, accessed via http://zookeeper.apache.org/.
23. Apache, accessed via http://hive.apache.org/.
24. Pig, accessed via http://pig.apache.org/.
25. Mahout, accesed via http://mahout.apache.org/.
26. Thomas Erl, Wajid Khattak, and Paul Buhler, “Big Data Fundamentals, Concepts,
Drivers & Techniques”, Prentice Hall, 2016
27. Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman, “Mahout in Action”,
Manning Publications, 2011
28. Practical eCommerce, “10 Questions on Product Recommendations,” http://mng.bz/b6A5
29. Google Blogoscoped, “Overall Number of Picasa Photos” (March 12, 2007),
http://blogoscoped.com/archive/2007-03-12-n67.html
30. TutorialsPoint [Online],
Available: https://www.tutorialspoint.com/mahout/mahout_introduction.htm, [Accessed: 24-
Feb-2018]
31. Wisdomjobs [Online], Available: https://www.wisdomjobs.com/e-university/hadoop-
tutorial-484/a-brief-history-of-hadoop-14745.html [Accessed: 26-Feb-2018]
32. Edureka [Online], Available: https://www.edureka.co/blog/hadoop-tutorial/ [Accessed:
26-Feb-2018]
33. bmc [Online], Available: http://www.bmc.com/guides/hadoop-examples.html [Accessed:
26-Feb-2018]
34. bmc [Online], Available: http://www.bmc.com/guides/hadoop-benefits-business-
case.html [Accessed: 26-Feb-2018]
35. JavaTPoint [Online], Available: https://www.javatpoint.com/hadoop-tutorial [Accessed:
27-Feb-2018]
36. Edureka [Online], Available: https://www.edureka.co/blog/spark-tutorial/ [Accessed: 04-
March-2018]
37. http://www.scala-lang.org/ [Accessed: 04-March-2018]
38. http://spark.apache.org/downloads.html [Accessed: 04-March-2018]
39. https://drive.google.com/file/d/0B7Yoht-ttAeuWGd5SC1LcVZUbkk/view [Accessed:
04-March-2018]
40. https://docs.google.com/forms/d/e/1FAIpQLScJyoUgebjUlRyG9JrXY-
aF9M4P2ZuMhFW7pzXzWaZ2IMEcxw/viewform [Accessed: 04-March-2018]
41. https://docs.google.com/forms/d/e/1FAIpQLSfMzE3sUoIASRbVanVwdlUX2h-
1vXiksSxusHjSqhj_CR6RhQ/viewform [Accessed: 04-March-2018]
42.
https://docs.google.com/forms/d/e/1FAIpQLSdPiCNiObU145181i0IyBEmHQtk5V09Wyq7F
0ZYVyx1H-faYA/viewform [Accessed: 04-March-2018]

http://hortonworks.com/blog/introducing-apache-hadoop-yarn/
http://zookeeper.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://mahout.apache.org/
http://mng.bz/b6A5
http://blogoscoped.com/archive/2007-03-12-n67.html
https://www.tutorialspoint.com/mahout/mahout_introduction.htm
https://www.wisdomjobs.com/e-university/hadoop-tutorial-484/a-brief-history-of-hadoop-14745.html
https://www.wisdomjobs.com/e-university/hadoop-tutorial-484/a-brief-history-of-hadoop-14745.html
https://www.edureka.co/blog/hadoop-tutorial/
http://www.bmc.com/guides/hadoop-examples.html
http://www.bmc.com/guides/hadoop-benefits-business-case.html
http://www.bmc.com/guides/hadoop-benefits-business-case.html
https://www.javatpoint.com/hadoop-tutorial
https://www.edureka.co/blog/spark-tutorial/
http://www.scala-lang.org/
http://spark.apache.org/downloads.html
https://drive.google.com/file/d/0B7Yoht-ttAeuWGd5SC1LcVZUbkk/view
https://docs.google.com/forms/d/e/1FAIpQLScJyoUgebjUlRyG9JrXY-aF9M4P2ZuMhFW7pzXzWaZ2IMEcxw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScJyoUgebjUlRyG9JrXY-aF9M4P2ZuMhFW7pzXzWaZ2IMEcxw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfMzE3sUoIASRbVanVwdlUX2h-1vXiksSxusHjSqhj_CR6RhQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfMzE3sUoIASRbVanVwdlUX2h-1vXiksSxusHjSqhj_CR6RhQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdPiCNiObU145181i0IyBEmHQtk5V09Wyq7F0ZYVyx1H-faYA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdPiCNiObU145181i0IyBEmHQtk5V09Wyq7F0ZYVyx1H-faYA/viewform

