Big Data Analytics

Having started with strategy and identified the SMART questions around customers,
finance, operations, resources and risk you need to figure out what metrics and data you
actually need access to in order to answer those questions, which in turn will help you to
deliver your strategy.

1.9. BIG DATA TOOLS AND TECHNIQUES [18]

1.9.1 Understanding Big Data Storage [18]

As we have discussed in much of the book so far, most, if not all big data applications
achieve their performance and scalability through deployment on a collection of storage
and computing resources bound together within a runtime environment. In essence, the
ability to design, develop, and implement a big data application is directly dependent on
an awareness of the architecture of the underlying computing platform, both from a
hardware and more importantly from a software perspective.

One commonality among the different appliances and frameworks is the adaptation of
tools to leverage the combination of collections of four key computing resources:

1. Processing capability often referred to as a CPU, processor, or node. Generally
speaking, modern processing nodes often incorporate multiple cores that are individual
CPUs that share the node’s memory and are managed and scheduled together, allowing
multiple tasks to be run simultaneously; this is known as multithreading.

2. Memory, which holds the data that the processing node is currently working on. Most
single node machines have a limit to the amount of memory.

3. Storage, providing persistence of data—the place where datasets are loaded, and from
which the data is loaded into memory to be processed.

4. Network, which provides the “pipes” through which datasets are exchanged between
different processing and storage nodes.

Because single-node computers are limited in their capacity, they cannot easily
accommodate massive amounts of data. That is why the high-performance platforms are
composed of collections of computers in which the massive amounts of data and
requirements for processing can be distributed among a pool of resources.

1.9.2 A Generals Overview of High-Performance Architecture [18]

Most high-performance platforms are created by connecting multiple nodes together via a
variety of network topologies. Specialty appliances may differ in the specifics of the
configurations, as do software appliances. However, the general architecture
distinguishes the management of computing resources (and corresponding allocation of

49

Big Data Analytics

tasks) and the management of the data across the network of storage nodes, as is seen in
Figure 1.12.

In this configuration, a master job manager oversees the pool of processing nodes,
assigns tasks, and monitors the activity. At the same time, a storage manager oversees the
data storage pool and distributes datasets across the collection of storage resources. While
there is no a priori requirement that there be any colocation of data and processing tasks,
it is beneficial from a performance perspective to ensure that the threads process data that
is local, or close to minimize the costs of data access latency.

To get a better understanding of the layering and interactions within a big data platform,
we will examine the Apache Hadoop software stack, since the architecture is published
and open for review.

Hadoop is essentially a collection of open source projects that are combined to enable a
software-based big data appliance. We begin with the core aspects of Hadoop’s utilities,
upon which the next layer in the stack is propped, namely Hadoop distributed file
systems (HDFS) and MapReduce. A new generation framework for job scheduling and
cluster management is being developed under the name YARN.

Physical node Physical node Physical node
Job
manager
:--q
[
Executive management Processing [Processing J I Processing J
node node node

Storage
manager
Storage/data management

/1

=]
]
&

Data Data
node i

:

Figure 1.12 Typical organization of resources in a big data platform [18]

1.9.3 HDFS [18]

HDEFS attempts to enable the storage of large files, and does this by distributing the data
among a pool of data nodes. A single name node (sometimes referred to as NameNode)
runs in a cluster, associated with one or more data nodes, and provide the management of
a typical hierarchical file organization and namespace. The name node effectively
coordinates the interaction with the distributed data nodes.

50

Big Data Analytics

The creation of a file in HDFS appears to be a single file, even though it blocks “chunks”
of the file into pieces that are stored on individual data nodes.

The name node maintains metadata about each file as well as the history of changes to
file metadata. That metadata includes an enumeration of the managed files, properties of
the files, and the file system, as well as the mapping of blocks to files at the data nodes.
The data node itself does not manage any information about the logical HDFS file; rather,
it treats each data block as a separate file and shares the critical information with the
name node.

Once a file is created, as data is written to the file, it is actually cached in a temporary file.
When the amount of the data in that temporary file is enough to fill a block in an HDFS
file, the name node is alerted to transition that temporary file into a block that is
committed to a permanent data node, which is also then incorporated into the file
management scheme.

HDFS provides a level of fault tolerance through data replication. An application can
specify the degree of replication (i.e., the number of copies made) when a file is created.
The name node also manages replication, attempting to optimize the marshaling and
communication of replicated data in relation to the cluster’s configuration and
corresponding efficient use of network bandwidth. This is increasingly important in
larger environments consisting of multiple racks of data servers, since communication
among nodes on the same rack is generally faster than between server node sin different
racks. HDFS attempts to maintain awareness of data node locations across the
hierarchical configuration.

In essence, HDFS provides performance through distribution of data and fault tolerance
through replication. The result is a level of robustness for reliable massive file storage.
Enabling this level of reliability should be facilitated through a number of key tasks for
failure management, some of which are already deployed within HDFS while others are
not currently implemented:

* Monitoring: There is a continuous “heartbeat” communication between the data nodes
to the name node. If a data node’s heartbeat is not heard by the name node, the data node
is considered to have failed and is no longer available. In this case, a replica is employed
to replace the failed node, and a change is made to the replication scheme.

* Rebalancing: This is a process of automatically migrating blocks of data from one data
node to another when there is free space, when there is an increased demand for the data
and moving it may improve performance (such as moving from a traditional disk drive to
a solid-state drive that is much faster or can accommodate increased numbers of
simultaneous accesses), or an increased need to replication in reaction to more frequent
node failures.

* Managing integrity: HDFS uses checksums, which are effectively “digital signatures”,
associated with the actual data stored in a file (often calculated as a numerical function of

51

Big Data Analytics

the values within the bits of the files) that can be used to verify that the data stored
corresponds to the data shared or received. When the checksum calculated for a retrieved
block does not equal the stored checksum of that block, it is considered an integrity error.
In that case, the requested block will need to be retrieved from a replica instead.

* Metadata replication: The metadata files are also subject to failure, and HDFS can be
configured to maintain replicas of the corresponding metadata files to protect against
corruption.

* Snapshots: This is incremental copying of data to establish a point in time to which the
system can be rolled back.!® 2

These concepts map to specific internal protocols and services that HDFS uses to enable
a large-scale data management file system that can run on commodity hardware
components. The ability to use HDFS solely as a means for creating a scalable and
expandable file system for maintaining rapid access to large datasets provides a
reasonable value proposition from an Information Technology perspective:

* decreasing the cost of specialty large-scale storage systems;
* providing the ability to rely on commodity components;

* enabling the ability to deploy using cloud-based services;

* reducing system management costs.

1.9.4 MapReduce and YARN [18]

In Hadoop, MapReduce originally combined both job management and oversight and the
programming model for execution. The MapReduce execution environment employs a
master/slave execution model, in which one master node (called the JobTracker) manages
a pool of slave computing resources (called TaskTrackers) that arecalled upon to do the
actual work. The role of the JobTracker is to manage the resources with some specific
responsibilities, including managing the TaskTrackers, continually monitoring their
accessibility and availability, and the different aspects of job management that include
scheduling tasks, tracking the progress of assigned tasks, reacting to identified failures,
and ensuring fault tolerance of the execution. The role of the TaskTracker is much
simpler: wait for a task assignment, initiate and execute the requested task, and provide
status back to the JobTracker on a periodic basis. Different clients can make requests
from the JobTracker, which becomes the sole arbitrator for allocation of resources.

There are limitations within this existing MapReduce model. First, the programming
paradigm is nicely suited to applications where there is locality between the processing
and the data, but applications that demand data movement will rapidly become bogged
down by network latency issues. Second, not all applications are easily mapped to the
MapReduce model, yet applications developed using alternative programming methods

52

Big Data Analytics

would still need the MapReduce system for job management. Third, the allocation of
processing nodes within the cluster is fixed through allocation of certain nodes as “map
slots” versus “reduce slots.” When the computation is weighted toward one of the phases,
the nodes assigned to the other phase are largely unused, resulting in processor
underutilization.

This is being addressed in future versions of Hadoop through the segregation of duties
within a revision called YARN. In this approach, overall resource management has been
centralized while management of resources at each node is now performed by a local
NodeManager. In addition, there is the concept of an ApplicationMaster that is associated
with each application that directly negotiates with the central ResourceManager for
resources while taking over the responsibility for monitoring progress and tracking status.
Pushing this responsibility to the application environment allows greater flexibility in the
assignment of resources as well as be more effective in scheduling to improve node
utilization.

Last, the YARN approach allows applications to be better aware of the data allocation
across the topology of the resources within a cluster. This awareness allows for improved
colocation of compute and data resources, reducing data motion, and consequently,
reducing delays associated with data access latencies. The result should be increased
scalability and performance.?!

1.9.5 Expanding the Big Data Application Ecosystem [18]

At this point, a few key points regarding the development of big data applications should
be clarified. First, despite the simplicity of downloading and installing the core
components of a big data development and execution environment like Hadoop,
designing, developing, and deploying analytic applications still requires some skill and
expertise. Second, one must differentiate between the tasks associated with application
design and development and the tasks associated with architecting the big data system,
selecting and connecting its components, system configuration, as well as system
monitoring and continued maintenance.

In other words, transitioning from an experimental “laboratory” system into a production
environment demands more than just access to the computing, memory, storage, and
network resources. There is a need to expand the ecosystem to incorporate a variety of
additional capabilities, such as configuration management, data organization, application
development, and optimization, as well as additional capabilities to support analytical
processing. Our examination of a prototypical big data platform engineered using Hadoop
continues by looking at a number of additional components that might typically be
considered as part of the ecosystem.

53

Big Data Analytics

1.9.6 ZOOKEEPER [18]

Whenever there are multiple tasks and jobs running within a single distributed
environment, there is a need for configuration management and synchronization of
various aspects of naming and coordination. The project’s web page specifies it more
clearly: “Zookeeper is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services.”??
Zookeeper manages a naming registry and effectively implements a system for managing
the various static and ephemeral named objects in a hierarchical manner, much like a file
system. In addition, it enables coordination for exercising control over shared resources
that are impacted by race conditions (in which the expected output of a process is
impacted by variations in timing) and deadlock (in which multiple tasks vying for control
of the same resource effectively lock each other out of any task’s ability to use the
resource). Shared coordination services like those provided in Zookeeper allow
developers to employ these controls without having to develop them from scratch.

1.9.7 HBASE [18]

HBase is another example of a nonrelational data management environment that
distributes massive datasets over the underlying Hadoop framework. HBase is derived
from Google’s BigTable and is a column-oriented data layout that, when layered on top
of Hadoop, provides a fault-tolerant method for storing and manipulating large data
tables. Data stored in a columnar layout is amenable to compression, which increases the
amount of data that can be represented while decreasing the actual storage footprint. In
addition, HBase supports in-memory execution.

HBase is not a relational database, and it does not support SQL queries. There are some
basic operations for HBase: Get (which access a specific row in the table), Put (which
stores or updates a row in the table), Scan (which iterates over a collection of rows in the
table), and Delete (which removes a row from the table). Because it can be used to
organize datasets, coupled with the performance provided by the aspects of the columnar
orientation, HBase is a reasonable alternative as a persistent storage paradigm when
running MapReduce applications.

1.9.8 HIVE [18]

One of the often-noted issues with MapReduce is that although it provides a methodology
for developing and executing applications that use massive amounts of data, it is not
more than that. And while the data can be managed within files using HDFS, many
business applications expect representations of data in structured database tables. That

54

Big Data Analytics

was the motivation for the development of Hive, which (according to the Apache Hive
web site?’) is a “data warehouse system for Hadoop that facilitates easy data
summarization, ad-hoc queries, and the analysis of large datasets stored in Hadoop
compatible file systems.” Hive is specifically engineered for data warehouse querying
and reporting and is not intended for use as within transaction processing systems that
require real-time query execution or transaction semantics for consistency at the row
level.

Hive is layered on top of the file system and execution framework for Hadoop and
enables applications and users to organize data in a structured data warehouse and
therefore query the data using a query language called HiveQL that is similar to SQL (the
standard Structured Query Language used for most modern relational database
management systems). The Hive system provides tools for
extracting/transforming/loading data (ETL) into a variety of different data formats. And
because the data warehouse system is built on top of Hadoop, it enables native access to
the MapReduce model, allowing programmers to develop custom Map and Reduce
functions that can be directly integrated into HiveQL queries. Hive provides scalability
and extensibility for batch-style queries for reporting over large datasets that are typically
being expanded while relying on the fault tolerant aspects of the underlying Hadoop
execution model.

1.9.9 PIG [18]

Even though the MapReduce programming model is relatively straightforward, it still
takes some skill and understanding of both parallel and distributed programming and Java
to best take advantage of the model. The Pig project is an attempt at simplifying the
application development process by abstracting some of the details away through a higher
level programming language called Pig Latin. According to the project’s web site?, Pig’s
high-level programming language allows the developer to specify how the analysis is
performed. In turn, a compiler transforms the Pig Latin specification into MapReduce
programs.

The intent is to embed a significant set of parallel operators and functions contained
within a control sequence of directives to be applied to datasets in a way that is somewhat
similar to the way SQL statements are applied to traditional structured databases. Some
examples include generating datasets, filtering out subsets, joins, splitting datasets,
removing duplicates. For simple applications, using Pig provides significant ease of
development, and more complex tasks can be engineered as sequences of applied
operators.

In addition, the use of a high-level language also allows the compiler to identify
opportunities for optimization that might have been ignored by an inexperienced

55

Big Data Analytics

programmer. At the same time, the Pig environment allows developers to create new user
defined functions (UDFs) that can subsequently be incorporated into developed programs.

1.9.10 MAHOUT [18]

Attempting to use big data for analytics would be limited without any analytics
capabilities. Mahout is a project to provide a library of scalable implementations of
machine learning algorithms on top of MapReduce and Hadoop. As is described at the
project’s home page?,

Mahout’s library includes numerous well-known analysis methods including:

» Collaborative filtering and other user and item-based recommender algorithms,
which is used to make predictions about an individual’s interest or preferences through
comparison with a multitude of others that may or may not share similar characteristics.

* Clustering, including K-Means, Fuzzy K-Means, Mean Shift, and Dirichlet process
clustering algorithms to look for groups, patterns, and commonality among selected
cohorts in a population.

» Categorization using Naive Bayes or decision forests to place items into already
defined categories.

* Text mining and topic modeling algorithms for scanning text and assigning contextual
meanings.

 Frequent pattern mining, which is used for market basket analysis, comparative health
analytics, and other patterns of correlation within large datasets.

Mahout also supports other methods and algorithms. The availability of implemented
libraries for these types of analytics free the development team to consider the types of
problems to be analyzed and more specifically, the types of analytical models that can be
applied to seek the best answers.

56

Big Data Analytics

Variable

Intent

Technical Requirements

Predisposition to
parallelization

Number and type of processing
node(s)

Number or processors
Types of processors

Size of data to be
persistently stored

Amount and allocation of disk
space for distributed file system

Size of disk drives

MNumber of disk drives

Type of drives (S5 versus magnetic
versus optical)

Bus configuration (shared everything
versus shared nothing, for example)

Amount of data to be
accessible in memory

Amount and allocation of core
memory

Amount of RAM memory
Cache memories

Meed for cross-node
Ccommunication

Optimize speed and bandwidth

Network/cabinet configuration

Network speed

Metwork bandwidth

Types of data
organization

Data management requirements

File management organization

Database requirements

Data orentation (row versus colummn)

Type of data structures

Developer skill set

Development tools

Types of programming tools, compilers,
execution models, debuggers, ete.

Tvpes of algorithms

Analytic functionality
requirements

Data warchousefmarts for OLAP
Data mining and predictive analytics

Table 1.9 Variables to Consider When Framing Big Data Environment [18]

1.9.11 Considerations [18]

Big data analytics applications employ a variety of tools and techniques for
implementation. When organizing your thoughts about developing those applications, it
is important to think about the parameters that will frame your needs for technology
evaluation and acquisition, sizing and configuration, methods of data organization, and
required algorithms to be used or developed from scratch.

Prior to diving directly into downloading and installing software, focus on the types of
big data business applications and their corresponding performance scaling needs, such as
those listed in Table 1.9.

The technical requirements will guide both the hardware and the software configurations.
This also allows you to align the development of the platform with the business
application development needs.

57

