
BUSINESS INTELLIGENCE & DATA WAREHOUSING — TOPIC 2

DATA MODELLING AND

DATABASE DESIGN

Objectives

2

▪ Understand the importance of data modeling in database design.

▪ Create Entity Relationship Diagrams (ERD) and describe their role

in visualizing data.

▪ Describe fundamental concepts of relational databases and

normalization.

▪ Apply dimensional modelling principles to design a data warehouse

structure.

▪ Create effective fact and dimension tables for a specific business

scenario

Data Modelling & ERDs

3

▪ Data modelling refers to the process of developing visual representations of

the data that will be kept in the database.

▪ The visual representations of data modeling are diagrams that show data

elements, their relationships and their constraints i.e. ERDs.

▪ Data modeling and entity relationship diagrams (ERDs) are like the

blueprints for organizing information in a structured way.

▪ Data modelling can be done at three levels; conceptual model,

logical model and physical model.

Data Modelling & ERDs ..

4

▪ Data modelling refers to the process of developing visual representations of

the data that will be kept in the database.

▪ Data modeling and entity relationship diagrams (ERDs) are like the

blueprints for organizing information in a structured way.

▪ Understanding data models makes managing data a breeze, whether you're

building a database, a website, or just trying to keep your notes organized.

▪ Data modelling can be done at three levels; conceptual model,

logical model and physical model.

Why Data Modelling?

5

▪ Organizing Information: It helps to organize complex information into a

structured format, making it easier to understand and manage.

▪ Improves communication because it t provides a common language for

stakeholders to discuss and understand the data requirements of a system.

▪ Data models serve as blueprints for database design and application

development thus guiding the development process.

▪ Enhances data quality by defining clear structures and relationships, data

modeling improves the quality and consistency of data.

▪ Improves system performance due to properly modeled data structures that

optimize data retrieval and manipulation processes.

Levels of Data Modelling - Conceptual

6

▪ The conceptual data model provides a high-level overview of the system's

contents.

▪ It focuses on what the system contains rather than how it will be implemented

and thus it answers the “what” of the system.

▪ For example, consider designing a system for a university. At the conceptual

level, the model would identify entities such as “Student” and “Course”

▪ Relationships between these entities, like "Enroll" would also be defined.

▪ This level of abstraction allows stakeholders to understand the system's

requirements without getting into technical details.

Levels of Data Modelling - Conceptual

7

Levels of Data Modelling - Logical

8

▪ The logical data model provides a more detailed view of the data structures

and relationships.

▪ Data architects and analysts develop this model, focusing on creating a

technical map of data structures and rules.

▪ For instance, in the university system, the logical model would specify

attributes for entities such as “Student ID”, “Course Code”

▪ Primary keys, foreign keys, and relationships between entities would also

be defined.

▪ This level ensures that the database design is robust and comprehensive,

independent of the specific technology or DBMS used for implementation.

Levels of Data Modelling - Logical

9

Levels of Data Modelling - Physical

10

▪ At the physical data model level, the focus shifts to how the system will be

implemented using a particular DBMS or technology.

▪ Database administrators and developers construct this model, specifying

details such as table names, column names, and data types.

▪ Continuing with the university example, the physical model would include

specifics like "Student" table with columns such as "Student_ID," "Name,"

and "Address."

▪ It also accounts for optimizations and constraints required for efficient

database operations, considering the chosen DBMS's capabilities and

requirements.

Levels of Data Modelling - Physical

11

Entity Relationship Diagrams (ERDs)

12

▪ ERDs are graphical representations used to visualize relationships between or

amongst entities (e.g. people, places, objects, etc.) in a database or a system.

▪ They help to visualize and communicate the structure and dependencies of data

▪ ERDs help to collect and understand the data requirements of a system

▪ ERDs provide a blueprint for the database schema, enabling the effective

planning of entities, attributes, and relationships

▪ ERDs can be created at three levels: conceptual, logical, and physical

▪ ERDs use symbols and notations to represent entities, attributes, and

relationships

Entity Relationship Diagrams (ERDs)

13

Source: A Guide to the Entity Relationship Diagram (ERD)

Component of ERDs

14

▪ Entities

▪ Attributes

▪ Keys

▪ Relationship

Components of ERDs - Entity

15

▪ An entity is anything that can have data stored about it in a database. It can be

physical objects, concepts or events (e.g. order, payment, etc.)

▪ Entities represent a noun in natural language and they are usually represented by

rectangles in ER diagrams with entity name inside.

▪ An entity can be of two types i.e. strong entity or a weak entity.

▪ A strong entity has its own unique ID (primary key) and doesn't rely on other

entities. For instance, a student with a student ID is a strong entity as it exists

independently.

▪ Weak entities do not have their own primary keys. Instead, they rely on another

entity, known as the identifying or parent entity, for their existence.

Components of ERDs – Entity..

16

Components of ERDs – Entity..

17

Components Of ERDs –Attributes

18

▪ Attribute is a characteristic or property of an entity, for example for a student

entity, the possible attributes are registration number, student number, names,

date of birth, etc.

▪ Attributes are represented by ovals or text in ERDs.

▪ Attribute Domain. Set of allowable values for one or more attributes. For

example the types of values, whether numeric or alphabet, the number of digits,

etc

▪ Attributes types include: simple attributes, compound attributes, derived

attributes, single-valued attributes and multi-valued attributes.

▪ Simple attributes are those that can’t be split into other attributes e.g. first name.

Components Of ERDs –Attributes

19

▪ Compound attributes can be split into other attributes e.g. location can be split

into street address, city, country, etc.

▪ Single-valued attributes are those that take a single value e.g age.

▪ Multi-valued attributes are those that can take multi values for the same

occurrence e.g. academic qualifications.

▪ Derived attributes are those whose value can be derived from other attributes.

Components Of ERDs –Attributes

20

▪ Compound attributes can be split into other attributes e.g. location can be split

into street address, city, country, etc.

▪ Single-valued attributes are those that take a single value e.g age.

▪ Multi-valued attributes are those that can take multi values for the same

occurrence e.g. academic qualifications.

▪ Derived attributes are those whose value can be derived from other attributes.

Components Of ERDs –Attributes

21

Components Of ERDs –Keys

22

▪ It is a special attribute or a set of attributes that uniquely identifies an entity or a

relationship, such as a student ID, a course ID, or a combination of both.

▪ Keys are represented by underlining the attribute name in ER diagrams.

▪ Candidate key is a set of attributes that uniquely identify each record in the a table.

▪ Primary key is candidate key selected to uniquely identify each record in the table.

• Alternate key is a candidate key that is not selected to be primary key.

• Foreign key is an attribute in one table that refers to the primary key of

another table. It creates a relationship between two tables, allowing us to link

records in different tables.

• Composite Key is Acandidate key that consists of two or more attributes.

23

Components Of ERDs –Keys

Components of ERDs - Relationship

24

▪ Derived from the fact that a database consists of related data meaning that the

entities must be related according to the application being developed.

▪ A relationship in an ERD defines how two entities are related to each other.

They can be derived from verbs when speaking about a database or a set of

entities.

▪ Relationships in ERDs are represented as lines between two entities, and often

have a label on the line to further describe the relationship or diamonds in

ERDs.

▪ Relationship types include recursive relationship, identifying relationship, non-

identifying relationship, mandatory relationship and optional relationship.

Components of ERDs - Relationship

25

Components of ERDs - Relationship

26

Components of ERDs - Relationship Types

27

▪ Recursive relationship: A relationship where an entity is related to itself in some

way. For example, an employee can be a supervisor of another employee.

Components of ERDs - Relationship Types

28

▪ Identifying relationship: A relationship where a weak entity depends on a strong entity

for its existence and identity. For example, an order line item depends on an order for its

existence and identity.

▪ Non-identifying relationship: A relationship where an entity does not depend on another

entity for its existence and identity. For example, an order does not depend on a customer

for its existence and identity, even though it has a relationship with a customer.

▪ Mandatory relationship: A relationship where an entity must participate in the

relationship with another entity. For example, a student must enrol in at least one course.

▪ Optional relationship: A relationship where an entity may or may not participate in the

relationship with another entity. For example, a student may or may not have an address.

Relationships - Cardinality

29

▪ Cardinality represents the number of instances of an entity that exist in a

relationship between two entities.

▪ One to one: One record of an entity is directly related to another record of an

entity. A student has one address, and an address belongs to one student

▪ One to many: One record of an entity is related to one or more records of another

entity. A professor teaches many courses, and a course is taught by one professor

▪ Many to many: Many records of one entity can be related to many records of

another entity. A student enrolls in many courses, and a course has many students

enrolled

▪ We often crow’s foot notation or the Chen notation to represent the cardinality of

a relationship in an ER diagram.

Relationship – Cardinality (Crows Foot)

Relationship – Cardinality (Crows Foot)

1
7

Relationship – Cardinality (Crows Foot)

32

Relationship – Cardinality (Chen Notation)

33

34

35

Creating ERDs - Steps

36

▪ Identify Entities: Determine the main entities in the system being modeled. These are

the key objects or concepts that need to be represented.

▪ Define Relationships: Establish the relationship between and their cardinality entities

(e.g., one-to-one, one-to-many, many-to-many)

▪ Add Attributes: Define the characteristics or properties of each entity. These attributes

provide additional details about the entities.

▪ Draw the Diagram: Use standard notation (such as crow's foot notation) to create the

visual representation of the ERD. Draw entities as rectangles, relationships as lines

connecting them, and attributes within the rectangles.

▪ You can use various tools to come up with an ERD.

Creating ERDs – Tools that can be Used

37

▪ Microsoft Visio

▪ Microsoft MySQL Workbench

▪ Oracle SQL Developer

▪ LucidChart

▪ Visual Paradigm

▪ Get Mind

▪ Gliffy

▪ Among others

Creating ERDs – Question

38

Imagine you're tasked with creating a database schema for a new social media platform.

This platform allows users to interact with each other by creating posts, commenting on

posts, and liking posts. Each user has a unique user ID, username, and email address.

Posts are identified by a post ID and contain content and date information. Comments

are associated with posts and have their own comment ID, content, and date. Likes are

linked to posts and have a unique like ID along with the date.

Design the Entity-Relationship Diagram (ERD) for this social media platform, including

all necessary entities, attributes, and relationships. Ensure that your ERD clearly

represents how users interact with posts through comments and likes, capturing the

essence of the platform's functionality.

Creating ERDs – Question

39

▪ Entities: user, posts, comments, likes

▪ Attributes:

▪ user: id, username, email

▪ posts: post_id, date, content

▪ comments: comment_id, date, content

▪ likes: like_id, date)

▪ Relationship:

▪ user creates posts - 1:M

▪ post has comments - 1:M

▪ post receives likes - 1:M

▪ user comments on posts - 1:M

▪ user likes posts - 1:M

Creating ERDs – Question – Conceptual

40

Creating ERDs – Question – Logical Model

41

Creating ERDs – Question – Physical Model

42

Creating ERDs – Question – Using a tool

DIMENSION MODELLING

Dimension Modelling
▪ Dimension modeling is a data modeling technique used in data

warehousing to structure and organize data for analysis and reporting
purposes.

▪ It involves designing fact tables and dimension tables to provide a
framework for storing and querying data efficiently.

▪ It focuses on simplicity, ease of use, and query performance, making it
well-suited for decision support systems.

▪ Dimensional modelling employs simplified schema designs, primarily
star schema and snowflake schema.

▪ It is a dimension model that facilitates data analysis, reporting and
decision making.

Dimension Modelling
▪ Relational modeling organizes data into normalized tables with

emphasis on reducing redundancy and dependency.

▪ It is suited for transactional or operational databases.

▪ Dimensional modeling organizes data into fact tables and dimension
tables with emphasis on simplifying data relationships for analysis and
reporting.

▪ Dimension modelling is suited for analytical databases, particularly
data warehouses and data marts.

Why Dimension Modelling?
▪ Dimension modeling simplifies complex data relationships, making it

easier for users to analyze and interpret data.

▪ By organizing data into dimensions and facts, users can quickly
navigate and understand the data structure, leading to more effective
analysis.

▪ Relational models may require complex joins and queries to retrieve
data for reporting and analysis, resulting in inefficient query
performance.

▪ Relational modeling is primarily designed for transactional databases
and may not be well-suited for data warehousing environments.

▪ Dimensional models are optimized for query performance, with
denormalized structures and pre-aggregated data.

Components of a dimension model

▪ Fact tables contain quantitative data (facts) related to business processes

e.g. revenue, quantity sold, order amount.

▪ Dimension tables contain descriptive attributes that provide context to
facts stored in fact tables e.g. product, customer, time.

▪ Attributes are the properties or characteristics of entities within dimension
tables e.g. product name, customer ID, date.

▪ Hierarchies represent ordered levels of attributes within dimensions e.g.
Date hierarchy (year > quarter > month), product hierarchy (category >
subcategory > product).

▪ Keys are unique identifiers used to establish relationships between fact and
dimension tables e.g. primary keys, foreign keys.

Dimension Model – Fact tables

▪ Fact tables contain quantitative data (facts) related to business

processes e.g. revenue, quantity sold, order amount.

▪ A fact table is the primary table in a dimensional model where the

numerical performance measurements of the business are stored.

▪ Fact tables serve as the central repository for measurable data points in

dimension modeling.

▪ They store transactional or event-based data that can be aggregated and

analyzed.

▪ Fact tables contain foreign keys that establish relationships with

dimension tables.

Dimension Model – Fact tables

▪ Fact tables may contain different types of facts, including additive,
semi-additive, and non-additive facts.

▪ Additive facts can be summed up across all dimensions, while semi-
additive and non-additive facts have limitations on aggregation.

▪ Aggregations include sums, averages, counts, and other statistical
measures calculated at different levels of granularity.

▪ A detail to be added to the fact table normally answers to the “how
much/many” question.

Dimension Model – Fact tables

▪ Fact tables may contain different types of facts, including additive,
semi-additive, and non-additive facts.

▪ Additive facts can be summed up across all dimensions, while semi-
additive and non-additive facts have limitations on aggregation.

▪ Aggregations include sums, averages, counts, and other statistical
measures calculated at different levels of granularity.

▪ A detail to be added to the fact table normally answers to the “how
much/many” question.

Dimension Model – Dimension tables
▪ Dimension tables contain descriptive attributes that provide context to the

facts stored in the fact table.

▪ For example, in a sales data warehouse, dimension tables might include
product, time, and location dimensions.

▪ Descriptive attributes represent the characteristics or properties of entities
within the dimension, such as product name, customer ID, or date.

▪ Dimension tables typically include unique keys or identifiers that uniquely
identify each record within the dimension.

▪ Dimension tables often have a hierarchical structure with ordered levels of
attributes.

▪ Dimension tables store categorical or qualitative data that categorizes and
organizes the data in the fact table.

Types of Dimension Models – Star Schema

▪ In a star schema, data is organized into a central fact table surrounded
by dimension tables.

▪ The fact table contains quantitative data (facts) related to business
processes, while dimension tables contain descriptive attributes that
provide context to the facts.

▪ Star schemas are denormalized, with each dimension table directly
connected to the fact table.

▪ Star schemas are optimized for query performance and are well-suited
for OLAP (Online Analytical Processing) environments.

▪ Look for advantages and disadvantages of this schema

Types of Dimension Models – Star Schema

Types of Dimension Models – Snowflake Schema

▪ A snowflake schema is an extension of the star schema, where
dimension tables are normalized into multiple related tables.

▪ Dimension tables in a snowflake schema are organized into a
hierarchical structure, with each level of attributes stored in separate
tables.

▪ Snowflake schemas reduce data redundancy and improve data integrity
by normalizing dimension tables.

▪ While snowflake schemas offer benefits in terms of data normalization
and storage efficiency, they may result in more complex queries and
potentially slower query performance compared to star schemas.

▪ Look for advantages and disadvantages of this schema

Types of Dimension Models– Flat Schema

▪ A flat schema is a schema where all attributes and fields related to the
entity are stored in a single table.

▪ All data is stored in a single table, with each row representing a single
record or entity, and each column representing an attribute or field.

▪ flat schemas do not define relationships between tables. All data is
stored together without any inherent relationships or dependencies.

▪ Flat schemas are straightforward and easy to understand, making them
suitable for simple data storage and retrieval tasks.

▪ Flat schemas are less commonly used in modern industry settings
compared to relational or dimensional schemas.

Which type of model is this?

Types of Dimension Models–Conclusion
▪ Understanding schemas and the available types is crucial for effective database design and

management.

▪ The Flat schema is simple and easy to work with but may not be suitable for complex data

relationships or large datasets.

▪ The Star schema is a popular choice for dimensional modeling, offering reduced data

redundancy and intuitive design. Although it may be less flexible when handling complex

relationships between dimensions.

▪ Lastly, the Snowflake schema provides greater flexibility and improved data integrity through

normalizing dimension tables. However, its complexity can make it more challenging to

understand and query.

Dimension Modelling Process

▪ Define business process/scenario.

▪ Identify dimensions (descriptive attributes) and facts (quantifiable measures) that will

be relevant for analysis.

▪ Design fact tables to store the quantitative data (facts) related to the business

scenario.

▪ Design dimension tables to store descriptive attributes related to the dimensions

identified in the business scenario.

▪ Define relationships between fact and dimension tables using foreign keys.

▪ Populate the fact and dimension tables with relevant data extracted from operational

systems or other data sources.

▪ Create indexes on foreign keys and frequently queried columns to optimize query

performance.

Assignment

You are working as a data analyst for a retail company that sells various

products through both physical stores and online channels. The company is

interested in improving its sales analysis and decision-making process by

implementing a dimensional data model.

Your task is to design a dimensional data model that captures the sales

transactions and related information for the retail company. Consider the

following requirements:

Assignment
▪ The company sells products across different categories such as electronics,

clothing, accessories, etc.

▪ Each product has a unique identifier, a name, a category, and a price.

▪ Sales transactions occur both in physical stores and online. Each transaction is
recorded with a unique identifier, a timestamp, the customer's information
(e.g., ID, name), and the products purchased along with their quantities.

▪ Customers can be regular or guest. Regular customers have accounts with the
company, while guest customers do not.

▪ Each transaction is associated with a store or an online platform.

▪ The company wants to analyze sales performance by product category,
store/online platform, customer type, and time period.

▪ Design a dimensional data model to meet the company's requirements. Include
appropriate dimension tables, fact tables, and their relationships.

Assignment
Dimension Tables:

▪ Product Dimension: Product_ID (Primary Key), Product_Name, Category, Price

▪ Customer Dimension: Customer_ID (Primary Key), Customer_Name,
Customer_Type (Regular/Guest)

▪ Store Dimension: Store_ID (Primary Key), Store_Name, Location

▪ Time Dimension: Date_ID (Primary Key), Date, Day, Month, Year, Quarter,
Weekday

Fact Table:

• Sales Fact Table: Date_ID (Foreign Key referencing Time Dimension),
Product_ID (Foreign Key referencing Product Dimension), Customer_ID (Foreign
Key referencing Customer Dimension), Store_ID (Foreign Key referencing Store
Dimension), Quantity, Total_Sales_Amount

Assignment

Thank you!
This image was generated by Copilot AI to depict Data Modelling and ERDs

