

MAKERERE UNIVERSITY BUSINESS SCHOOL

Bachelor of Business Computing BUC 2225: Business Intelligence and Data Warehousing

Course Description

- The aim of the course is to equip students with the skills to effectively leverage data for decisionmaking in business contexts.
- Focusing on Business Intelligence and Data Warehousing, the course aims to provide a solid understanding of data principles, ETL processes, and the use of BI tools.
- By fostering hands-on experience, the goal is to prepare students for roles in data analysis, business intelligence, and related fields, enhancing their ability to contribute to data-driven decisionmaking processes within organizations.

Course Objectives

- To equip students with the skills to effectively leverage data for decision-making in business contexts.
- To provide a solid understanding of data principles, ETL processes, and the use of BI tools.
- To prepare students for roles in data analysis, business intelligence, and related fields, enhancing their ability to contribute to datadriven decision-making processes within organizations.

Learning Outcomes

- After completing the course, students will be able to:
 - Design and implement a functional data warehouse, mastering dimensional modelling and architectural principles.
 - Execute ETL processes using tools like Talend, seamlessly integrating and transforming data from various sources.
 - Use BI tools like Power BI to craft interactive and insightful reports and dashboards, effectively communicating data-driven insights.
 - Apply analytics concepts, including data quality and governance, to strategically analyze and interpret data, driving informed decisions across organizations.

□ Coursework 30%

- Course test
- Project
- □ Final Examination 70%

MAKERERE UNIVERSITY BUSINESS SCHOOL

Business Intelligence and Data Warehousing TOPIC 1

Introduction to Business Intelligence and Data Warehousing

Topic 1: Outline

- Definition and significance of Business Intelligence (BI)
- Historical evolution and key milestones in BI
- Overview of Data Warehousing and its role in decision support
- Importance of data-driven decision-making in modern organizations

Definition:

- Business Intelligence (BI) refers to the technologies, processes, and tools that help organizations collect, integrate, analyze, and present business information to support decision-making.
- The primary goal of BI is to provide actionable insights and support better decision-making within an organization.
 - BI systems help convert raw data into meaningful information, enabling executives, managers, and other stakeholders to make informed and strategic decisions.

Business Intelligence (BI)... Key Components

- Data Sources:
 - BI relies on data from various sources, including databases, spreadsheets, and external sources.
- Data Warehousing:
 - Centralized repositories that store, integrate, and organize data for BI analysis.
- Data Analysis:
 - Techniques and tools to analyze data, discover patterns, and derive insights.
- Reporting and Dashboards:
 - Visualization of analyzed data to facilitate understanding and decision-making.
- Decision Support Systems (DSS):
 - Tools that aid decision-makers by providing relevant information and insights.

- □ Importance of Business Intelligence:
 - Informed Decision-Making: BI provides timely and accurate information for making informed business decisions.
 - Competitive Advantage: Organizations gain a competitive edge by leveraging data to identify trends and opportunities.
 - Operational Efficiency: BI helps streamline processes, optimize resources, and improve overall efficiency.
 - Predictive Analysis: BI enables organizations to forecast future trends and make proactive decisions.

Sales and Revenue Analysis:

- Track sales performance and revenue trends over time.
- Analyze customer purchasing behavior and identify upsell or cross-sell opportunities.
- Forecast sales and set realistic targets.

Customer Analytics:

- Understand customer preferences and behaviors.
- Analyze customer satisfaction and feedback.
- Improve customer retention strategies and identify high-value customers.

Financial Analysis:

- Monitor and analyze financial performance.
- Create financial forecasts and budgets.
- Identify cost-saving opportunities and optimize financial processes.

Supply Chain Optimization:

- Track and manage inventory levels.
- Analyze supplier performance and optimize procurement processes.
- Improve demand forecasting and reduce lead times.

Marketing Campaign Effectiveness:

- Analyze the success of marketing campaigns.
- Track website traffic, social media engagement, and conversion rates.
- Optimize marketing spend based on ROI analysis.

Employee Performance and HR Analytics:

- Monitor employee performance metrics.
- Analyze workforce demographics and trends.
- Identify training needs and improve talent acquisition strategies.

14

Operational Efficiency:

- Analyze operational data to identify bottlenecks and inefficiencies.
- Optimize resource allocation and streamline business processes.
- Monitor key performance indicators (KPIs) for operational excellence.

Risk Management and Compliance:

- Identify and assess potential risks in real-time.
- Ensure compliance with industry regulations and standards.
- Implement proactive risk mitigation strategies.

15

Product Analytics:

- Monitor product performance and customer feedback.
- Analyze product lifecycle and plan for product improvements or new launches.
- Identify market trends and competitive positioning.

Healthcare Analytics:

- Analyze patient data for improved healthcare outcomes.
- Monitor hospital operations and resource allocation.
- Identify patterns in disease prevalence for public health initiatives.

Education Analytics:

- Monitor student performance and engagement.
- Evaluate the effectiveness of teaching methods and curriculum.
- Implement data-driven decision-making in educational institutions.

Real-Time Dashboards:

- Create real-time dashboards for executives and stakeholders.
- Monitor key metrics and performance indicators at a glance.
- Enable quick decision-making based on up-to-date information.

Data Warehouses:

17

Definition:

- A Data Warehouse (DW) is a centralized repository that stores large volumes of data from various sources, making it accessible for analysis and reporting.
- They are designed to support business intelligence and reporting activities by providing a consolidated and optimized view of data.
- Data warehouses enable efficient querying and analysis of historical and current data, which is crucial for decision-making.
- They help organizations in organizing and managing their data for better reporting, analysis, and datadriven decision-making.

Reasons for Data Warehouses ...

- 18
- Data Integration:
 - Consolidate data from different sources into a unified and consistent format.
- Historical Analysis:
 - Store historical data for trend analysis, performance evaluation, and decision support.
- Query and Reporting Performance:
 - Enhance query performance by pre-aggregating and indexing data.
- □ Scalability:
 - Data warehouses are designed to handle large volumes of data and scale as the organization grows.
- Business Intelligence:
 - Facilitate business intelligence activities by providing a single source of truth for data analysis.

Components of Data Warehouses ...

- Data Extraction:
 - Process of pulling data from source systems into the data warehouse.
- Data Transformation:
 - Convert and integrate data into a common format within the data warehouse.
- Data Loading:
 - Load transformed data into the data warehouse for analysis.
- Data Modeling:
 - Designing the structure of the data within the warehouse for optimal query performance.

Data Mining:

Definition:

- Process of discovering patterns, correlations, and insights from large datasets using various techniques, including statistical analysis, machine learning, and artificial intelligence.
- Data mining can be applied to different types of data, such as structured databases, text documents, and multimedia files.
- The goal is to extract meaningful information that can be used for decision support, prediction, and optimization.
- Common data mining techniques include clustering, classification, regression, association rule mining, and anomaly detection.

Key Concepts in Data Mining ...

- Pattern Recognition:
 - Identifying patterns and trends within data that may not be apparent through traditional analysis.
- Classification:
 - Categorizing data into predefined classes or groups based on patterns.
- Clustering:
 - Grouping similar data points together based on their characteristics.
- Association Rule Mining:
 - Discovering relationships and associations between variables in a dataset.

Applications of Data Mining ...

- 22
- Marketing and Sales:
 - Targeted marketing, customer segmentation, and sales forecasting.
- Healthcare:
 - Disease prediction, patient profiling, and treatment optimization.
- □ Finance:
 - Fraud detection, risk assessment, and investment analysis.
- Manufacturing:
 - Quality control, process optimization, and supply chain management.

Historical evolution and key milestones in BI

1960s-1970s: Emergence of Decision Support Systems (DSS):

- Decision Support Systems (DSS) emerged as precursors to modern BI,
 - Focused on providing analytical tools to help managers make decisions.
- Early DSS mainly relied on mainframe computers and batch processing techniques to analyze structured data.
 - Simple reporting systems to extract and analyze data
 - Allowed users to interact with data and generate reports based on specific criteria.

Historical evolution and key milestones in BI ...

- 1980s-1990s: Rise of Data Warehousing and Executive Information Systems:
 - □ The 1980s saw the development of data warehousing concepts,
 - Pioneered by researchers such as Bill Inmon and Ralph Kimball.
 - Data warehouses emerged as centralized repositories for structured data from various sources within an organization.
 - OLAP (Online Analytical Processing) technologies gained popularity,
 - Enabled multidimensional analysis of data for reporting and decision-making.
 - Executive Information Systems (EIS) provided senior executives with summarized reports and easy access to key performance indicators (KPIs) for monitoring organizational performance.

1990s-2000s: Expansion of BI Tools and Data Integration:

- The 1990s witnessed the proliferation of BI tools from vendors like Cognos, BusinessObjects, and MicroStrategy.
 - These tools offered capabilities for reporting, querying, and data visualization, making it easier for users to access and analyze data.
- Data mining techniques gained popularity for uncovering patterns and insights from large datasets
- Advance in data integration technologies
 - Enabled organizations to consolidate data from different sources into data warehouses for analysis.

2000s-2010s: Advent of Self-Service BI and Big Data:

Self-service BI platforms gained prominence,

- Allowed business users to perform ad-hoc analysis and create reports without heavy reliance on IT.
- The rise of big data technologies like Hadoop and NoSQL databases enabled organizations to process and analyze large volumes of structured and unstructured data.
- Data discovery and visualization tools such as Tableau, QlikView, and Power BI became popular,
 - Offered intuitive interfaces for data exploration and visualization.

2010s-Present: Integration of AI and Predictive Analytics:

- The integration of artificial intelligence (AI) and machine learning (ML) into BI platforms
 - Enabled advanced analytics, including predictive modeling and prescriptive analytics.
- BI solutions increasingly moved to the cloud,
 - Scalability, flexibility, and reduced infrastructure costs.
- Mobile BI applications became prevalent,
 - Allow users to access insights and reports on smartphones and tablets from anywhere.

Historical evolution and key milestones in BI ...

2020s and Beyond: Continued Convergence and AI-driven Insights:

The lines between BI, data analytics, and data science continue to blur as organizations seek comprehensive insights from their data.

AI-driven BI solutions will become more sophisticated,

- Automate insights discovery, anomaly detection, and decision-making processes.
- Real-time analytics capabilities will become more prevalent,
 - Enable organizations to make data-driven decisions instantaneously.

Role of BI and DW in Decision Making/Support

- BI and DW facilitates decision support by providing decision-makers with timely, relevant, and actionable insights.
- Decision support systems (DSS) leverage data from warehouses and BI tools to assist users in making strategic, tactical, and operational decisions.
- Enable users to analyze trends, patterns, and performance metrics over time.
- BI tools offer a wide range of data visualization options, including charts, graphs, and heatmaps, to help users visualize complex data relationships and trends.

Improved Accuracy and Objectivity:

Organizations can make decisions based on evidence, reducing the risk of biases and errors that may arise from subjective judgments.

Better Strategic Planning:

Data-driven insights help organizations formulate and refine their strategies.

By analyzing historical data and market trends, organizations can identify <u>patterns</u>, <u>opportunities</u>, and <u>potential risks</u>, enabling them to make informed decisions about future directions and investments.

Enhanced Operational Efficiency

 Organizations analyze operational data to identify inefficiencies, streamline processes, and allocate resources more effectively to achieve operational excellence.

Enhanced Customer Understanding:

Organizations analyze customer data to personalize their offerings, improve customer experiences, and enhance customer loyalty and satisfaction.

- **Competitive Advantage**:
 - By making data-driven decisions, organizations can identify market trends, anticipate customer demands, and respond to changing market conditions more quickly and effectively than their competitors.
- Innovation and Adaptability:
 - Using customer feedback, market trends, and emerging technologies, organizations can identify new opportunities for innovation and stay ahead of the competition.

Risk Management:

Analyzing historical data and using predictive analytics, organizations can identify potential risks and develop strategies to mitigate them, thereby minimizing potential losses and disruptions to their operations.

Regulatory Compliance:

- In many industries, compliance with regulatory requirements is essential.
 - Data-driven approaches help organizations <u>ensure</u> <u>compliance</u> by **providing accurate and timely reporting, monitoring, and analysis** of relevant data.