BACHELOR OF BUSINESS COMPUTING
BBC 1114: COMPUTING MATHEMATICS
Topic 1: Data Representation in Computer Systems
Topic Objectives: 
The objectives of this topic include:
i. Describe the importance of data representation in computer systems or computing.
ii. Learn about different number systems used in computer science.
iii. Explore methods to convert between different number systems.
iv. Analyze the use of various number systems in real-world applications.
Topic Learning Outcomes:
By the end of this lecture, students should be able to:
i. Explain the significance of data representation in computing.
ii. Differentiate between decimal, binary, octal, and hexadecimal number systems.
iii. Convert numbers between decimal, binary, octal, and hexadecimal systems.
iv. Identify applications of each number system in computing.
Topic Outline:
i. Introduction; 
ii. Positional Numbering Systems and their importance in computing
iii. Decimal to Binary Conversions, 
iv. Signed Integer Representation; Floating-Point Representation, 
v. Character Codes and their applications in Computing
Timings: 
Total hours: 6 hours
i. Lectures: 4 hours
ii. Tutorials: 2 hours
Private Study: 3 hours



Introduction
Data representation is a fundamental concept in computer systems that deals with how various types of data are encoded and stored within a computer's memory and processed by its components. In modern computing, data is represented using various number systems, such as the binary, decimal, octal, and hexadecimal systems. Each number system has its unique characteristics and applications.
Positional numbering systems
Positional numbering systems, also known as place-value systems, are mathematical notations for representing numbers where the value of each digit depends on its position or place within the entire number. The most common positional numbering systems are the decimal (base-10), binary (base-2), octal (base-8), and hexadecimal (base-16) systems. Each system uses a specific base, and digits within that base to represent numbers. Here's an overview of these systems:
1. Decimal (Base-10) Number System:
· In the decimal system, each digit's value is determined by its position relative to the rightmost digit, which has a base value of 10.
· It uses the digits 0 to 9.
· The place value of each digit increases by a power of 10 from right to left.
· Example: 235 = 2 * 10^2 + 3 * 10^1 + 5 * 10^0.
2. Binary (Base-2) Number System:
· In the binary system, each digit's value is determined by its position relative to the rightmost digit, which has a base value of 2.
· It uses only the digits 0 and 1.
· The place value of each digit increases by a power of 2 from right to left.
· Example: 1101 = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 13 (in decimal).
3. Octal (Base-8) Number System:
· In the octal system, each digit's value is determined by its position relative to the rightmost digit, which has a base value of 8.
· It uses the digits 0 to 7.
· The place value of each digit increases by a power of 8 from right to left.
· Example: 34 = 3 * 8^1 + 4 * 8^0 = 28 (in decimal).
4. Hexadecimal (Base-16) Number System:
· In the hexadecimal system, each digit's value is determined by its position relative to the rightmost digit, which has a base value of 16.
· It uses the digits 0 to 9 and the letters A to F (where A = 10, B = 11, ..., F = 15).
· The place value of each digit increases by a power of 16 from right to left.
· Example: 1A7 = 1 * 16^2 + 10 * 16^1 + 7 * 16^0 = 423 (in decimal).
Positional numbering systems are fundamental in computing and digital systems. Computers use the binary system at the hardware level due to its straightforward representation in electronic circuits. However, other systems, like decimal, octal, and hexadecimal, are often used for human-readable representation, memory addressing, color codes, and character encodings. Converting between these systems is essential for understanding how computers process and represent data internally and externally.
Converting Between Number Systems:
· Decimal to Binary: Divide-by-2 method, repeatedly dividing by 2 and noting remainders.
· Binary to Decimal: Sum of powers of 2 method, multiplying each digit by 2 raised to its position's power.
· Decimal to Octal/Hexadecimal: Repeated division method, similar to binary but with base 8/16.
· Octal/Hexadecimal to Decimal: Sum of powers of 8/16 method, similar to binary-to-decimal conversion.
Decimal Number System
The decimal number system, also known as the base-10 number system, has several important applications in computers. Despite computers fundamentally using binary representation at the hardware level, the decimal system is still utilized for various purposes due to its human-friendly nature and compatibility with our everyday arithmetic. In summary;
· The decimal number system uses ten symbols: 0 to 9.
· It's the number system humans commonly use for everyday calculations.
· Computers often convert between binary and decimal for human-readable output.
Example: Converting decimal to binary
27 (decimal) = 11011 (binary) 
Here are some key applications of the decimal number system in computers:
i. Human-Readable Output: Computers often need to present information to users in a way that is easily understandable. Decimal representation is intuitive to humans and is used for displaying numerical values, quantities, and calculations in user interfaces, reports, and outputs.
ii. Input and Output Conversions: When data is exchanged between computers and humans, conversions between decimal and binary representations are necessary. For instance, when you type a number in decimal on a computer, it needs to be converted to binary for processing. Conversely, when computer-generated results are displayed to humans, they are often converted back to decimal for readability.
iii. Decimal Arithmetic: Decimal arithmetic is essential for various applications, such as financial calculations, accounting software, and scientific simulations that involve decimal values. These calculations require accurate representation of decimal fractions, which can be challenging using binary representation due to rounding errors.
iv. Database and Storage: In databases and storage systems, decimal representation is used to store and manipulate various data types, including currency, measurements, and other decimal-based values. This ensures precision and accuracy in applications where rounding errors are unacceptable.
v. Floating-Point Arithmetic: Computers use floating-point representation to handle real numbers in scientific and engineering calculations. Floating-point numbers consist of a sign, an exponent (usually in binary), and a significand (mantissa). While the internal representation is often binary-based, the numbers are converted to and from decimal for input/output and human interpretation.
vi. Graphics and Image Processing: In graphics and image processing applications, color values are often represented using decimal values in the RGB color model. Each color channel (red, green, blue) is represented as a decimal value between 0 and 255, making it easier for designers to work with colors.
vii. User Input and Output Formatting: When users interact with computer programs, they often input and output data in decimal format. This includes entering numerical values, specifying quantities, and providing measurements.
viii. Networking and Communication: Decimal values are used in networking protocols and communication systems, especially in cases where values like IP addresses, port numbers, and other identifiers are presented to users or integrated with human-readable information.
ix. Education and Learning: The decimal number system is fundamental to mathematics education and serves as a bridge between mathematical concepts and computer programming. It helps beginners understand the relationship between everyday arithmetic and binary representation in computers.
In summary, the decimal number system is extensively used in computers to facilitate communication between humans and machines, support accurate arithmetic in specific applications, and provide a familiar and intuitive representation of various types of data.
Binary Number System
The binary number system is the foundation of modern computing and is used extensively in various aspects of computer systems. In summary; 
· The binary number system uses only two symbols: 0 and 1.
· Each digit in a binary number is called a bit (short for binary digit).
· Computers use binary representation at the hardware level due to its simplicity in electronic circuits.
Example: Converting binary to decimal
1101 (binary) = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 13 (decimal) 
Here are some key applications of the binary number system in computers.
i. Digital Circuits and Logic Gates: Binary representation is natural for electronic circuits due to its two-state nature (0 and 1). Logic gates, which form the basis of digital circuits, perform operations based on binary input signals. Computers use combinations of logic gates to perform complex calculations and operations.
ii. Data Storage and Memory: Computer memory and storage devices are organized into binary cells, where each cell can store a 0 or a 1. This binary storage allows computers to efficiently store and retrieve vast amounts of data.
iii. CPU Operations: Central Processing Units (CPUs) execute instructions by performing binary arithmetic and logic operations. Binary representation is used for both data and instructions that guide the CPU's operation.
iv. Machine Language: Machine language, the lowest-level programming language understood by computers, is based on binary code. Instructions and data for a computer's CPU are encoded in binary form, which the CPU can directly execute.
v. Microprocessor Architecture: Binary-coded instructions form the basis of microprocessor architectures. These instructions are fetched from memory and executed by the microprocessor to perform tasks.
vi. Communication and Networking: Binary signals are used for data transmission over networks and communication channels. Networking protocols encode data in binary format for transmission between devices.
vii. File Formats: Many file formats, including executable programs, images, audio, and video files, are stored in binary formats. These formats represent data using patterns of 0s and 1s.
viii. Digital Representation of Real-World Information: Binary is used to represent various real-world phenomena in digital form, such as sensor readings, temperature values, pressure levels, and more.
ix. Encryption and Cryptography: Binary is essential for cryptographic algorithms that secure data transmission and storage. Encryption techniques involve complex binary operations to ensure data privacy and integrity.
x. Bitwise Operations: Bitwise operations (AND, OR, XOR, etc.) are used extensively in computer programming for tasks like data manipulation, masking, and extracting specific bits from binary numbers.
xi. Error Detection and Correction: Binary-based error detection and correction codes, such as parity bits and Hamming codes, are used to detect and correct errors that can occur during data transmission or storage.
xii. Digital Displays: Binary representation is used in digital displays, such as LED and LCD screens. Each pixel's color or state is represented using combinations of binary values.
xiii. Control Systems: Binary signals are used in control systems to communicate between sensors, actuators, and controllers. These signals enable the control of various processes and devices.
xiv. Embedded Systems: Many embedded systems, such as microcontrollers in appliances, automobiles, and industrial machinery, rely on binary representation for processing and control.
In summary, the binary number system is at the core of computer systems and underlies almost every aspect of modern computing, from basic arithmetic operations to complex data processing, communication, and control.
Octal Number System
The octal number system, which is based on a radix of 8, was historically more relevant in the earlier days of computing, especially when memory storage was constrained and binary representation was complex to read and interpret. While octal representation is less commonly used today, it still has some historical and educational significance. In summary;
· The octal number system uses eight symbols: 0 to 7.
· It's used less frequently in modern computing but was more popular in early computer systems.
Example: Converting octal to binary
63 (octal) = 110011 (binary) 
Here are a few applications of the octal number system in computers:
i. Memory Addresses: In early computer systems, memory was often organized into word sizes that were multiples of 3 bits (e.g., 12, 24, 36 bits). Since 3 bits can be conveniently represented using a single octal digit, the octal system was used to display memory addresses. This allowed programmers to read and communicate memory addresses more easily than in binary.
ii. Grouping Bits: Octal numbers were used to group binary bits in sets of three, making it easier to read and write binary machine code. Each octal digit corresponds to three binary bits. This grouping helped programmers work with machine instructions and memory content more efficiently.
iii. Early Programming and Debugging: In early computing, octal was used as an intermediate representation for machine code instructions. Programmers would convert binary instructions into octal to make debugging and code analysis more manageable.
iv. UNIX File Permissions: In Unix-like operating systems, file permissions are often represented using octal notation. Each permission (read, write, execute) is assigned a numeric value (4 for read, 2 for write, and 1 for execute), and these values are combined to form an octal digit that represents the file's permission settings.
v. Historical Context: Octal representation has historical significance, especially in understanding the evolution of computing. Studying octal can help modern computer scientists and engineers appreciate the challenges and solutions faced by early programmers and hardware designers.
vi. Educational Purposes: Octal can be useful for teaching computer architecture and number systems. It's simpler than hexadecimal and can serve as a bridge between binary and hexadecimal systems, making it a useful stepping stone for students learning about data representation.
vii. Conversion Exercises: Octal conversion exercises can be used to reinforce understanding of number systems and their conversions. Working with octal numbers helps students practice converting between different bases and reinforces concepts of positional notation.
While the octal number system is less prominent in modern computing, its historical importance and educational value should not be overlooked. In practical applications, hexadecimal and binary systems have largely taken over due to their alignment with modern computer architectures and programming languages.
Hexadecimal Number System
The hexadecimal number system is widely used in various applications within the realm of computers and computer science due to its compactness, ease of conversion to and from binary, and its alignment with memory architectures. In summary;
· The hexadecimal number system uses sixteen symbols: 0 to 9 and A to F (where A = 10, B = 11, ..., F = 15).
· It's widely used for representing memory addresses, color values, and other compact representations in computing.
Example: Converting hexadecimal to binary
2A (hexadecimal) = 00101010 (binary) 
. Here are some key applications of the hexadecimal number system in computers:
i. Memory Addressing: Hexadecimal is commonly used to represent memory addresses. Memory addresses often correspond to byte locations in computer memory, and since each hexadecimal digit corresponds to four bits, it aligns well with the byte-addressable memory structure. This makes it easier for programmers and engineers to read and manage memory addresses.
ii. Programming and Debugging: Hexadecimal is used extensively in programming and debugging. Memory dumps, assembly language code, and machine code instructions are often represented in hexadecimal. This makes it easier to visualize the data stored in memory and to understand how machine instructions are encoded.
iii. Color Representation: In graphics and digital design, colors are often represented using hexadecimal notation. Each pair of hexadecimal digits represents the intensity of red, green, and blue (RGB) components of a color. This allows for a wide range of colors to be expressed using a concise notation.
iv. Character Encoding: The Unicode standard, which encompasses a wide range of characters from various languages and scripts, often represents characters using hexadecimal values. Unicode code points are commonly written in the form U+XXXX, where XXXX is the hexadecimal value of the code point.
v. Binary Operations: Hexadecimal is frequently used in computer architecture and digital logic design. When dealing with binary operations, such as bitwise AND, OR, and XOR, hexadecimal provides a more concise way to represent and manipulate binary values. Four binary bits correspond to a single hexadecimal digit.
vi. File Formats: Hexadecimal is used to represent binary data in file formats. For example, when viewing a binary file in a hex editor, each byte of the file is displayed as a hexadecimal value. This allows users to examine and edit the contents of the file at a low level.
vii. Network Addressing: In networking, IPv6 addresses are often represented using hexadecimal notation. IPv6 addresses are 128 bits long, and grouping them in hexadecimal notation makes them more manageable and human-readable.
viii. Machine Code Representation: When writing and analyzing machine code or assembly language programs, hexadecimal is often used to represent the individual instructions and data values. Each instruction and data byte is represented by one or more hexadecimal digits.
ix. Checksums and Hashes: In data verification and integrity checking, hexadecimal values are commonly used to represent checksums, cryptographic hashes, and other forms of data verification. Hexadecimal provides a compact representation of these values.
x. Firmware and Embedded Systems: Hexadecimal is used in firmware and embedded systems development, where low-level programming and memory management are essential. It allows engineers to understand and manipulate data stored in memory addresses.

In conclusion, the hexadecimal number system is an integral part of various aspects of computer systems, including memory management, programming, graphics, networking, and more. Its efficient representation of binary data, alignment with memory structures, and human-readable format make it a valuable tool in the world of computing.
Exercises: 
1. Convert the following decimal numbers to binary, octal and hexadecimal
a. 124
b. 5789
c. 342789
2. Convert the following binary numbers to decimal, octal and hexadecimal
a. 1101101
b. 10001101
c. 10101010101
3. Convert the following octal numbers to binary, decimal and hexadecimal
a. 67
b. 542
c. 7614
4. Convert the following hexadecimal numbers to binary, octal and decimal.
a. 3A
b. 4CD1
c. 23BEF
References:
1. Tanenbaum, A. S., & Woodhull, A. S. (2015). Operating Systems: Design and Implementation. Pearson.
2. Patterson, D. A., & Hennessy, J. L. (2017). Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann.
3. Stallings, W. (2014). Computer Organization and Architecture. Pearson.
4. Tanenbaum, A. S. (2008). Structured Computer Organization. Pearson.
5. Hwang, K., & Briggs, F. A. (2010). Computer Architecture and Parallel Processing. McGraw-Hill.

Signed Integer Representation and Floating-Point Representation,
Signed Integer Representation
In computer systems, signed integers are used to represent both positive and negative whole numbers. There are several methods for representing signed integers, with the two's complement representation being the most common due to its efficiency in arithmetic operations. Here are some key concepts related to signed integer representation:
Sign-Magnitude Representation
In sign-magnitude representation, the most significant bit (MSB) represents the sign of the number (0 for positive, 1 for negative), and the remaining bits represent the magnitude of the number. For example:
· Positive: 0101 (5 in decimal)
· Negative: 1101 (-5 in decimal)
This representation is straightforward but inefficient for arithmetic operations.
One's Complement Representation
In one's complement representation, to negate a number, you flip all its bits. However, there are two representations for zero: all 0s and all 1s. For example:
· Positive: 0101 (5 in decimal)
· Negative: 1010 (-5 in decimal)
Two's Complement Representation
Two's complement representation is used to store both positive and negative integers using binary digits. It has the advantage that addition and subtraction operations work the same way for both positive and negative numbers.
Positive Integers: Positive integers are represented in the same way as in regular binary representation. For example, the decimal number 5 is represented as 0101 in 4-bit two's complement.
Negative Integers: To represent negative integers, invert all the bits of the positive integer's binary representation and add 1 to the result.
Two's complement representation is widely used in computers for signed integer arithmetic.
Range of Representation
In an n-bit two's complement representation:
· The range for signed integers is from -(2^(n-1)) to (2^(n-1) - 1).
· For example, in an 8-bit representation, the range is from -128 to 127.
Importance of Signed Integer Representation:
Signed integer representation is crucial in computer systems for accurately representing both positive and negative integer values. Here's why it's important:
i. Mathematical Expressions: Many real-world problems involve both positive and negative quantities. Without signed integer representation, it would be challenging to accurately represent and compute the results of mathematical expressions involving negative values.
ii. Arithmetic Operations: Signed integers enable computers to perform arithmetic operations involving both positive and negative numbers. Addition, subtraction, multiplication, and division can all be performed on signed integers, allowing for versatile computations in programming.
iii. Accounting and Finance: In financial applications, both positive and negative values are common. Signed integers are crucial for tracking debits and credits, calculating balances, and handling transactions accurately.
iv. Temperature and Sensor Data: Many measurements, such as temperature or sensor readings, can be negative or positive. Signed integers allow accurate representation of these values, even if they fall on both sides of zero.
v. Game Development and Graphics: In graphics and game development, positions and vectors often involve both positive and negative coordinates. Signed integers facilitate accurate positioning and movement calculations in virtual spaces.
vi. Error Codes and Flags: In programming, error codes and flags can indicate whether an operation succeeded or failed. By using signed integers, developers can use negative values to represent errors, making it clear that something went wrong.
vii. Efficient Memory Usage: In cases where only positive integers are needed, an unsigned representation could save memory space. However, using signed integers allows for more versatile data storage without sacrificing much memory efficiency.
viii. Data Structures: Signed integers are fundamental in data structures like arrays and linked lists. These structures can hold a wide range of integer values, whether positive, negative, or zero.
ix. Input/Output Handling: When reading data from external sources, such as files or user input, it's important to handle both positive and negative values. Signed integers enable robust data parsing and validation.
Floating-Point Representation
Floating-point representation is used to represent real numbers with both integer and fractional parts. It's used in scientific and engineering computations where a wide range of values and precision are needed. The IEEE 754 standard defines the most common formats for floating-point representation.
Components of Floating-Point Representation
A floating-point number is represented as a combination of three components:
1. Sign bit: 1 bit to represent the sign of the number (0 for positive, 1 for negative).
2. Exponent: A fixed number of bits that represent the exponent of the number. The exponent indicates the scale of the number.
3. Fraction (Mantissa): A fixed number of bits that represent the fractional part of the number.
Normalized Form
Floating-point numbers are usually normalized, which means they are represented in the form:
(-1)^s * 1.fraction * 2^exponent 
· The sign bit (s) determines the sign of the number.
· The fraction part (fraction) is a binary number between 1 and 2 (including 1).
· The exponent (exponent) is biased by a fixed value, allowing both positive and negative exponents.
Example:
Consider the decimal number 12.75 in binary:
· Sign bit: 0 (positive)
· Exponent: 10000101 (133 in decimal after bias adjustment)
· Fraction: 10100000000000000000000
IEEE 754 Standard
The IEEE 754 standard defines the most common formats for representing floating-point numbers. It includes two main formats: single precision (32 bits) and double precision (64 bits).
Single Precision (32 bits):
· 1 bit for the sign
· 8 bits for the exponent
· 23 bits for the mantissa
Double Precision (64 bits):
· 1 bit for the sign
· 11 bits for the exponent
· 52 bits for the mantissa
Normalized and Denormalized Numbers
In floating-point representation, numbers can be normalized (with a non-zero leading bit) or denormalized (with a leading zero bit, used to represent very small numbers close to zero).
Special Values
Floating-point representation also includes special values:
· Positive and negative infinity
· Not-a-Number (NaN) - used to represent undefined or unrepresentable values
Example:
Let's represent the decimal number 12.75 in IEEE 754 single precision:
1. Convert 12.75 to binary: 1100.11
2. Normalize: 1.10011 * 2^3
3. Exponent: 3 (biased by 127 in single precision)
4. Mantissa: 10011000000000000000000 (padded to 23 bits)
5. Sign: 0 (positive)
Importance of Floating-Point Representation:
Floating-point representation is essential for accurately representing real numbers, including those with fractional parts. Here's why it's important:
i. Real-World Measurements: Many real-world quantities, like distances, weights, and time intervals, involve fractional parts. Floating-point representation allows computers to handle these measurements with high precision.

ii. Scientific and Engineering Calculations: In scientific simulations, engineering design, and other technical fields, computations often involve real numbers. Floating-point representation enables accurate simulations and analyses.
iii. Financial Calculations: Financial calculations often require precise handling of decimal numbers, especially when dealing with monetary values or interest calculations.
iv. Graphics and Multimedia: Floating-point representation is used extensively in graphics processing, image editing, and audio processing. These applications require high precision for smooth rendering and manipulation of visual and auditory data.
v. Physical Simulations: In physics simulations, accurate representation of physical quantities like position, velocity, and forces is crucial. Floating-point numbers allow simulations to reflect real-world behavior accurately.
vi. Machine Learning and Data Analytics: Many algorithms in machine learning and data analytics involve working with large datasets and complex mathematical operations. Floating-point representation ensures accurate results in these computations.
vii. GPS and Geographic Information Systems: GPS coordinates and geographic measurements involve decimal degrees, which often have fractional parts. Floating-point representation is vital for accurate geospatial calculations.
viii. Weather Forecasting: Numerical weather models use floating-point representation to simulate atmospheric conditions accurately, helping meteorologists make more precise forecasts.
ix. Efficient Approximations: Floating-point representation allows computers to store and process real numbers using a finite amount of memory. This is crucial for achieving a balance between precision and memory efficiency.
Conclusion
Signed integer representation and floating-point representation are fundamental concepts in computer systems. Two's complement is a common method for representing signed integers, while floating-point representation, defined by the IEEE 754 standard, is used to represent real numbers with a sign, mantissa, and exponent. Understanding these representations is crucial for accurate numerical computations and memory management in computers.
References:
1. Patterson, D. A., & Hennessy, J. L. (2013). Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann.

2. Tanenbaum, A. S., & Goodman, J. R. (2014). Structured Computer Organization. Pearson.
3. Stallings, W. (2014). Computer Organization and Architecture: Designing for Performance. Pearson.
4. IEEE Computer Society. (1985). IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). IEEE.
5. Goldberg, D. (1991). What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, 23(1), 5-48. 

Character Codes and their applications in computing
Character codes, also known as character encodings, are systems that assign numeric values (codes) to characters in order to represent them in computers. These codes are essential for representing text-based information, such as letters, numbers, punctuation marks, and control characters, in digital form. Different character codes have been developed over time to support various languages, scripts, and computing requirements. Similarly, different character encoding schemes use various binary patterns to map characters to numerical values. Here are explanations for the character codes you mentioned:
Binary Code:
Binary code represents characters using sequences of 0s and 1s. It's the most fundamental form of character representation, where each character is assigned a unique binary pattern. However, binary code is not practical for human use due to its complexity.
Coded Decimal (BCD):
BCD is a binary-encoded representation of decimal digits. Each decimal digit is encoded using a fixed number of binary bits (usually 4 bits). BCD is often used in applications where precise decimal arithmetic is essential, such as financial calculations, as it avoids rounding errors associated with floating-point representation. In summary;
· BCD represents decimal digits using a 4-bit binary code for each digit.
· It's used for applications where accurate decimal arithmetic is crucial, like financial calculations.
Example: BCD representation
57 (decimal) = 0101 0111 (BCD) 
Here are some other famous character codes and their applications in computing:
1. ASCII (American Standard Code for Information Interchange):
ASCII is a widely used character encoding scheme that assigns unique 7-bit or 8-bit binary codes to characters. ASCII originally used 7 bits to encode characters, which allowed for 128 different characters. The extended ASCII version uses 8 bits, providing room for additional characters and symbols. In summary:
· ASCII is one of the earliest and most well-known character encodings.
· It uses 7 or 8 bits to represent a total of 128 or 256 characters, respectively.
· ASCII includes common English letters, digits, punctuation marks, and control characters.
· Applications: ASCII is used in basic text processing, file encoding, communication protocols, and legacy systems.
Example: ASCII and Unicode representation
ASCII: 65 (decimal) = 'A' Unicode: U+0041 = 'A' 
2. Unicode:
Unicode is a character encoding standard that aims to cover a vast range of characters from different languages, scripts, and symbols. It uses a variable-length encoding, where characters can be represented using 8, 16, or even 32 bits. The most common encoding within Unicode is UTF-8 (8-bit variable-length encoding), UTF-16 (16-bit variable-length encoding), and UTF-32 (32-bit fixed-length encoding).
Unicode's significance lies in its ability to provide a unified way to represent characters from various languages and scripts, allowing for global communication and support for diverse content. It addresses the limitations of earlier encodings by accommodating a much larger character set. In summary: 
· Unicode is a more comprehensive character encoding standard that aims to cover characters from all languages and scripts.
· It uses a variable number of bytes (typically 1 to 4 bytes) to represent characters.
· Unicode assigns unique code points to characters, allowing for a vast range of characters to be represented.
· Applications: Unicode is widely used in modern computing for multilingual applications, web content, internationalization, and supporting diverse languages and scripts.
3. UTF-8 (Unicode Transformation Format - 8-bit):
· UTF-8 is a variable-length encoding that represents Unicode characters using 8-bit sequences.
· It's backward-compatible with ASCII and can represent the entire Unicode character set.
· UTF-8 is commonly used for web content, email, and file formats due to its efficiency and compatibility.
4. UTF-16 (Unicode Transformation Format - 16-bit):
· UTF-16 uses 16-bit code units to represent characters.
· It can represent most characters with a single 16-bit unit but uses pairs of 16-bit units for characters outside the Basic Multilingual Plane (BMP).
· UTF-16 is used in various software applications and platforms, including Windows, Java, and some programming languages.
5. UTF-32 (Unicode Transformation Format - 32-bit):
· UTF-32 uses a fixed 32-bit encoding for all characters.
· Each character is represented using a single 32-bit code unit.
· UTF-32 is less space-efficient than UTF-8 and UTF-16 but provides consistent encoding for all characters.
6. EBCDIC (Extended Binary Coded Decimal Interchange Code):
EBCDIC is an early character encoding scheme developed by IBM. It was primarily used in IBM mainframe systems and some legacy environments. EBCDIC assigns unique binary codes to various characters and control codes, but it's not as widely used as other encodings today. In summary:
· EBCDIC is an older character encoding mainly used in IBM mainframe systems.
· It uses 8 bits to represent characters and includes various control characters, letters, and special symbols.
7. ISO-8859 (Latin Character Sets):
· The ISO-8859 series includes several character encodings, each focusing on a specific language or group of languages.
· They are widely used for legacy systems and languages that are primarily based on Latin script.
8. ASCII Art and Emoticons:
· ASCII characters are often used to create visual representations, known as ASCII art.
· ASCII art has been used for various purposes, including decorative banners, logos, and illustrations.
· Emoticons and emojis, commonly used in online communication, are examples of character-based symbols.
9. Programming Languages and Source Code:
· Character codes are used extensively in programming languages to represent source code and program text.
· Special characters, operators, and syntax elements are encoded using character codes.
· These codes influence the behavior and structure of programming languages.
10. Text Processing and Search:
· Character codes are crucial for text processing tasks like searching, sorting, and manipulating textual data.
· They determine how characters are compared, indexed, and stored in data structures.
In summary, character codes are fundamental to text representation, communication, internationalization, and software development in computing. They enable computers to process, store, and display textual information in a wide range of languages and scripts, supporting the global nature of modern technology.
References:
1. ANSI. (1967). American National Standard for Information Systems - Coded Character Sets. ANSI X3.4.
2. Unicode Consortium. (2020). The Unicode Standard. Unicode, Inc.
3. Gackle, K. (2003). Character Encoding in Internationalization: Common Concerns and Ways to Address Them. Unicode Technical Note #13.
4. Flanagan, D., & Matsumoto, Y. (2007). The Ruby Programming Language. O'Reilly Media.
5. Sargent, M., & Lisle, T. (2015). HTML and CSS: Design and Build Websites. John Wiley & Sons.

2 | Page

